• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NMR studies on interactions between the amyloid β peptide and selected molecules

Wahlström, Anna January 2011 (has links)
Alzheimer’s disease is an incurable neurodegenerative disorder linked to the amyloid β (Aβ) peptide, a 38-43 residue peptide. The detailed molecular disease mechanism(s) is (are) unknown, but oligomeric Aβ structures are proposed to be involved. In common for the papers in this thesis is interactions; interactions between Aβ(1-40) and selected molecules and metal ions. The purpose has been to find out more about the structural states that Aβ can adopt, in particular the β-sheet state, which probably is linked to the oligomeric structures. The methods used have been nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence spectroscopy using Thioflavin T (ThT). Upon addition of SDS/LiDS detergent or Congo red (CR) to Aβ(1-40), the initial random coil/PII-helix state was transformed into β-sheet and, in the case of detergent, a final α-helical state. In contrast to SDS/LiDS and CR, the dimeric Affibody molecule locks monomeric Aβ(1-40) in a β-hairpin state. It was found that by truncating the flexible N-terminal end of the Affibody molecule its affinity to Aβ was improved. The aggregation of Aβ(1-40) was further studied in the presence of a β-cyclodextrin dimer by a kinetic assay using ThT. Although having a weak dissociation constant in the millimolar range, the β-cyclodextrin dimer modified the aggregation pathways of Aβ. Finally Aβ(1-40) was studied in presence of Cu2+ and Zn2+ at physiological and low pH. Cu2+ was observed to maintain its specific binding to Aβ when decreasing the pH to 5.5 while Zn2+ behaved differently. This could be of importance in the Alzheimer’s disease brain in which the environment can become acidic due to inflammation.        In conclusion the results show that Aβ(1-40) is very sensitive to its environment, responding by adopting different conformations and aggregating in aqueous solutions. The β-sheet state is induced by varying molecules with different properties, properties that govern the final Aβ state. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript. Paper 5: Manuscript.

Page generated in 0.083 seconds