• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chromatin Diminution in 'Mesocyclops edax' (Crustacea, Copepoda): Similarity of the Pre- and Post-diminution Euchromatic Genomes.

McKinnon, Christian 18 October 2012 (has links)
Chromatin diminution is defined as the elimination of DNA during the differentiation of early embryonic cells into pre-somatic cells. While it was first observed in the nematode Parascaris equorum, it also been identified in other parasitic nematodes, hagfish and copepods. In the copepod Mesocyclops edax, up to 90% of genomic DNA is eliminated during chromatin diminution. It was previously shown that the eliminated DNA contained highly repetitive heterochromatic sequences. Here, we digested pre- and post-diminution DNA with BamHI and produced small libraries of clones from each. Analyses revealed no decrease in low copy numbered sequences, such as transposable elements. Rather, both libraries are found to be surprisingly similar in all aspects analysed. Further comparison also demonstrated similarity of our libraries with the DNA sequences eliminated from Cyclops kolensis. Consequently, we suggest that M. edax eliminates portions of euchromatic DNA, in addition to the previously characterized satellite sequences.
2

Chromatin Diminution in 'Mesocyclops edax' (Crustacea, Copepoda): Similarity of the Pre- and Post-diminution Euchromatic Genomes.

McKinnon, Christian 18 October 2012 (has links)
Chromatin diminution is defined as the elimination of DNA during the differentiation of early embryonic cells into pre-somatic cells. While it was first observed in the nematode Parascaris equorum, it also been identified in other parasitic nematodes, hagfish and copepods. In the copepod Mesocyclops edax, up to 90% of genomic DNA is eliminated during chromatin diminution. It was previously shown that the eliminated DNA contained highly repetitive heterochromatic sequences. Here, we digested pre- and post-diminution DNA with BamHI and produced small libraries of clones from each. Analyses revealed no decrease in low copy numbered sequences, such as transposable elements. Rather, both libraries are found to be surprisingly similar in all aspects analysed. Further comparison also demonstrated similarity of our libraries with the DNA sequences eliminated from Cyclops kolensis. Consequently, we suggest that M. edax eliminates portions of euchromatic DNA, in addition to the previously characterized satellite sequences.
3

Chromatin Diminution in 'Mesocyclops edax' (Crustacea, Copepoda): Similarity of the Pre- and Post-diminution Euchromatic Genomes.

McKinnon, Christian January 2012 (has links)
Chromatin diminution is defined as the elimination of DNA during the differentiation of early embryonic cells into pre-somatic cells. While it was first observed in the nematode Parascaris equorum, it also been identified in other parasitic nematodes, hagfish and copepods. In the copepod Mesocyclops edax, up to 90% of genomic DNA is eliminated during chromatin diminution. It was previously shown that the eliminated DNA contained highly repetitive heterochromatic sequences. Here, we digested pre- and post-diminution DNA with BamHI and produced small libraries of clones from each. Analyses revealed no decrease in low copy numbered sequences, such as transposable elements. Rather, both libraries are found to be surprisingly similar in all aspects analysed. Further comparison also demonstrated similarity of our libraries with the DNA sequences eliminated from Cyclops kolensis. Consequently, we suggest that M. edax eliminates portions of euchromatic DNA, in addition to the previously characterized satellite sequences.

Page generated in 0.0611 seconds