Spelling suggestions: "subject:"cyclotomic polynomials"" "subject:"cyclotomic olynomials""
1 |
Explicit Factorization of Generalized Cyclotomic Polynomials of Order $2^m 3$ Over a Finite Field $F_q$Tosun, Cemile 01 August 2013 (has links)
We give explicit factorizations of $a$-cyclotomic polynomials of order $2^m 3$, $Q_{2^m3,a}(x)$, over a finite field $F_q$ with $q$ elements where $q$ is a prime power, $m$ is a nonnegative integer and $a$ is a nonnegative element of $F_q$. We use the relation between usual cyclotomic polynomials and $a$-cyclotomic polynomials. Factorizations split into eight categories according to $q \equiv \pm1$ (mod 4), $a$ and $-3$ are square in $F_q$. We find that the coefficients of irreducible factors are primitive roots of unity and in some cases that are related with Dickson polynomials.
|
2 |
Cyclotomic polynomials (in the parallel worlds of number theory)Bamunoba, Alex Samuel 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: It is well known that the ring of integers Z and the ring of polynomials A = Fr[T] over a
finite field Fr have many properties in common. It is due to these properties that almost all
the famous (multiplicative) number theoretic results over Z have analogues over A. In this
thesis, we are devoted to utilising this analogy together with the theory of Carlitz modules.
We do this to survey and compare the analogues of cyclotomic polynomials, the size of their
coefficients and cyclotomic extensions over the rational function field k = Fr(T). / AFRIKAANSE OPSOMMING: Dit is bekend dat Z, die ring van heelgetalle en A = Fr[T], die ring van polinome oor ’n
eindige liggaam baie eienskappe in gemeen het. Dit is as gevolg van hierdie eienskappe dat
feitlik al die bekende multiplikative resultate wat vir Z geld, analoë in A het. In hierdie tesis,
fokus ons op die gebruik van hierdie analogie saam met die teorie van die Carlitz module.
Ons doen dit om ’n oorsig oor die analoë van die siklotomiese polinome, hul koëffisiënte, en
siklotomiese uitbreidings oor die rasionele funksie veld k = Fr(T).
|
Page generated in 0.064 seconds