• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 37
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 16
  • 10
  • 8
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 307
  • 52
  • 48
  • 41
  • 38
  • 37
  • 28
  • 26
  • 26
  • 26
  • 20
  • 20
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Active control of a coupled plate-cylinder system

Toffin, Eric 16 June 2009 (has links)
An analytical expression for the sound pressure radiated into the far-field by a coupled plate-cylinder system is derived. The system is composed of a rigid plate mounted inside a finite length simply-supported cylindrical shell via a fixed number of active-passive mounts. A harmonic point-force disturbance is applied to the plate. Various active control approaches are applied to minimize the acoustic pressure radiated by the coupled system. The Active Structural Acoustic Control (ASAC) approaches include the control of the acoustic pressure in one or several directions of radiation, the control of the total radiated power, the control of the power radiated in a sector and the control of selected components associated with circumferential cylinder modes. The Active Vibration Control (AVC) approach is the control of the radial vibration at the points of attachment of the mounts on the cylinder. Numerical calculations show that the radiated pressure can be controlled using active-passive mounts for all these approaches. However, comparisons in terms of control efficiency and control effort show that ASAC yield better results than AVC. Moreover, ASAC enables directional control of sound and AVC does not. Opposed and parallel active-passive mount configurations are compared. The results show that the first arrangement requires much larger control forces on-resonance, but the two methods show similar performance off-resonance. / Master of Science
182

Investigation of combined feedback and adaptive control of cylinder vibrations

Finefield, John K. 06 October 2009 (has links)
A double loop control scheme is developed to control broadband acoustic radiation from a cylinder. An analog feedback loop is investigated and developed to add damping to the cylinder at particular frequencies of interest. Circuitry is developed and refined to condition Polyvinylidene Fluoride Filnl (PVDF) sensor outputs as strain rate signals. The strain rate signals are used in the feedback loop to provide damping to the structure. In conjunction with the feedback loop a feedforward loop is also implemented. The feedforward loop utilizes the filtered-x LMS algorithm. The result of combining the two control laws was unknown prior to implementation.The resulting control scheme shows that the feedback control law is effective in attenuating undesirable frequency components in the feedforward error sensor. This results in an error sensor signal which is highly correlated with the disturbance. With a more correlated error signal a more effective feedforward control is achieved. The resulting control system provides acoustic control over a wide range of frequencies. The filtered-x LMS algorithm is applied to an effective acoustic radiator. The feedback loop provides for broadband control of the structure. Typical double loop controller results show power spectrum reductions of 35 dB for an effective acoustic radiator and reductions of 10 dB for other frequencies in the excitation range. In addition, the measured controlled plant transfer functions show significant reductions in the transfer of energy through the structure. Overall Sound Pressure Level (SPL) reduction in the acoustic field generated by the cylinder in response to a random excitation with a harmonic component was 4.9 dB for feedback, 18.4 dB for feedforward, and 25.2 dB for the double loop controller. / Master of Science
183

Heat transfer through insulation uniformly applied to cylinders with flat ends

Nickerson, Thomas Shir January 1947 (has links)
M.S.
184

Heat transfer from a circular cylinder in a pulsating crossflow

January 1983 (has links)
M. S.
185

The determination of heat-transfer coefficients from finned cylinders in an air stream at varying fin-plane/air-stream angles, fin spacing, and air velocities

Drewry, David Gordon January 1955 (has links)
Since the turn of the twentieth century, many investigations have been made in the field of heat-transfer from finned cylinders in an air-stream with the fin-plane parallel to the air-stream. Most of these investigations have been made by the National Advisory Committee on Aeronautics (NACA) at Langely Memorial Aeronautical Laboratory, Langely Field, Virginia. The problem of determining the rate of heat-transfer from finned cylinders is extremely complex due to many variables such as fin space; fin width; fin thickness; cylinder diameter; and cooling air conductivity, viscosity, turbulence, and velocity. In the literature reviewed, there have been no successful theoretical equations for the determination of the rate of heat—transfer. Therefore, all information on the rate of heat-transfer must be based on experimental results or on empirical relationships which closely approximate the experimental values. The rate of heat-transfer from finned cylinders is a very important factor in the design of air-cooled internal combustion engines and high rate heat-exchangers. It is known that the rate of heat-transfer for the range of fin-plane/air-stream angles between 30 and 60 degrees is nearly twice that of a zero fin-plane/air-stream angle, Since the subject of heat-transfer from finned cylinders in an air-stream with the fin-plane parallel to the air-stream has been thoroughly investigated by the NACA, the author decided to conduct this investigation on finned cylinders in an air—stream with varying fin-plane/air-stream angles. Due to the limiting size of equipment available, this investigation was conducted on finned cylinders with a cylinder diameter of about one inch, while the test carried on by the NACA covered a range of cylinder diameters from 3.66 to 6.34 inches.⁵ The difference in the cylinder diameters may provide a valuable correlation for the variation of the rate of heat-transfer due to cylinder diameter. / Master of Science
186

Optimal control of a rotating cylinder partially filled with ideal fluid

Klauber, Robert D. January 1982 (has links)
Optimal control theory analysis is applied to a rotating cylinder partially filled with an inviscid, incompressible fluid. Two models of the system are investigated: (1) a two discrete mass system with fluid inside one mass and the control force applied to the other, and (2) a continuously distributed cylindrical mass system with control force applied to a discrete lower suspension mass. For (2) the method of assumed modes is used to discretize the system and obtain a set of n linear algebraic equations. In both cases the treatment is two dimensional and axial motion of the fluid is considered negligible. In both models, the uncontrolled system, shown by earlier researchers to be inherently unstable, is found to be controllable. The appropriate optimal feedback control is derived and system responses investigated. In addition, both models are shown to be observable. Direct measurement of only a portion of the components of the state vector are sufficient, using a Luenberger Observer, to estimate the entire state vector. / Ph. D.
187

The Hydrodynamic Effects of Long-line Mussel Farms

Plew, David Russell January 2005 (has links)
The hydrodynamic effects of long-line mussel farms are studied through a two-pronged approach. Large-scale hydrodynamic effects are investigated through the use of field measurements, primarily at a large mussel farm in Golden Bay, New Zealand (230 long-lines, covering an area of 2.45 km by 0.65 km). The research focuses on three areas: the effect of the farm on currents, mixing and stratification, and the dissipation of wave energy. Measurements are also made of the forces on long-line anchor ropes, and a limited investigation is made of phytoplankton depletion. The second approach is the use of laboratory drag measurements and Particle Tracking Velocimetry (PTV) to study the effect of mussel dropper (vertical lengths of mussel-encrusted crop rope) roughness and spacing on flow at small scales. These experiments provide data on very rough cylinders, and on cylinder arrays. The field measurements show that the local effects of mussel farms on currents are significant, but that magnitudes of the effects depend on dropper density, mussel sizes, orientation of the long-lines to the flow, and other parameters that are necessary to characterise the complex interactions between a farm and the flow. The drag on the submerged structures reduces water velocities within the Golden Bay farm by between 47% and 67%. Mussel farms present a porous obstacle to the flow, and flow that does not pass through the farm must be directed around or beneath it. The field measurements indicate that at the study site, most of the flow is diverted around the farm despite its large horizontal dimensions. The droppers at the study site extend over most of the water column (average dropper length ~ 8 m, average water depth ~ 11 m), providing a restriction to the flow beneath the farm. The strength of the density stratification may also favour a horizontal diversion. The flow around the farm is essentially two-dimensional. This suggests that two-dimensional numerical models should be sufficient to obtain reasonable predictions of the velocity drop within, and the diversion around, mussel farms. A simple two-dimensional pipe-network model gives reasonable estimates of the velocity within the farm, demonstrating that the drag of the farm may be adequately parameterised through local increases of bed friction. A wake in the form of reduced velocities extends downstream of the farm, and a mixing layer analogy suggests that this wake spreads slowly. The downstream extent of the wake cannot be determined, although it is likely to be limited by the tidal excursion. The degree of vertical mixing caused by the flow through a mussel farm cannot be quantified, although there are clear interactions between the stratification and the farm. Two mixing mechanisms are considered. A shear layer is generated beneath the farm due to the difference in velocities between the retarded flow within the farm and the flow beneath. Shear layers beneath mussel farms are likely to be weak unless the ambient currents are strong. It will be necessary for stratification to be weak or non-existent for this mechanism to generate significant mixing. The second mechanism is smaller-scale turbulence generated by the mussel droppers. Although the efficiency of this form of mixing is likely to be low, the large number of mussel droppers suggests that there will be some enhancement of vertical mixing. Frequency-dependent wave attenuation is recorded, and is predicted with some success by an analytical model. Both the model and the field data show that wave dissipation increases as the wave period decreases. Wave energy dissipation at the study site averages approximately 10%, although the measurements are made during a period of low wave heights (Hs < 0.25 m). Measurements of long-line anchor rope tension at two study sites indicate that the loadings are induced by the tide, currents, and waves. Dynamic wave loadings may be significant, and higher wave forces are measured at the offshore end of a long-line. The issue of seston or phytoplankton depletion is considered briefly through the examination of fluorescence, turbidity, and acoustic backscatter data. Although the results are consistent with a reduction of seston within the farm, differences between the inside and outside of the farm are not statistically significant. Mussel droppers resemble extremely rough circular cylinders, with the mussel shells forming the surface roughness elements. Drag measurements and PTV flow visualisation are used to investigate the importance of the large surface roughness, and the influence of dropper spacing and long-line orientation on flow. Drag measurements conducted with smooth and rough cylinders show that high surface roughness (ks/D ~ 0.092) has little effect on the drag coefficient of single cylinders in the range 4,000 < Re < 13,000, yet increases the drag coefficient of a row of cylinders normal to the flow. High surface roughness on single cylinders has the effect of shortening the near-wake region, increasing the peak turbulent kinetic energy (TKE) behind the cylinder, and decreasing the Strouhal number (St = 0.21, 0.19, 0.17 for ks/D = 0, 0.048, and 0.094 respectively). Arrays of rough cylinders (ks/D = 0.094) demonstrate similar flow characteristics to those of smooth cylinders. At cylinder spacings of S/D < 2.2, the surface roughness acts to favour the formation of a particular metastable wake pattern, whereas different metastable wake patterns are formed each run behind the smooth cylinders. The experiments show that the drag on single row arrays of cylinders are related to the cylinder spacing (increasing drag with decreasing spacing), and the drag also varies with the sine of the angle to the flow, except where the array is at low angles to the flow. The PTV measurements provide new data regarding the two-dimensional distributions of velocity, TKE, and turbulence statistics behind the cylinder arrays.
188

Heave, sway and roll of ship-like cylinders in waters of finite depth.

Chung, Hin Chew. January 1978 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Ocean Engineering, 1978 / Includes bibliographical references. / M.S. / M.S. Massachusetts Institute of Technology, Department of Ocean Engineering
189

Optimal geometric configuration of a cross bore in thick compound cylinders

Kiplagat, N. 09 1900 (has links)
M. Tech. (Department of Mechanical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The purpose of this research was to develop optimal numerical solutions that can be employed during the design of cross bored thick-walled compound cylinders. The geometric design parameters of a cross bored compound cylinder that were optimized include shrinkage pressure, cross bore size, shape, location, and obliquity. Finite Element Analysis (FEA) modeling software called Abaqus version 2019 was used to generate numerical solutions. A total of 48 different part models were created and analyzed in this work. The generated FEA results from these models were validated using analytical solutions developed from Lame’s theory. The effects of shrinkage pressure on hoop stresses and Stress Concentration Factor (SCF) were studied to determine the optimal conditions. The optimum shrinkage pressure obtained was henceforth used for further analysis in this work. In addition, using one factor at time optimization technique, an optimization process was carried out to determine the optimal combination of the cross bore configuration geometry that gives minimum SCF. These parameters of cross bore configuration geometry include different sizes of either circular or elliptical-shaped cross bore, positioned at radial, offset, and/or inclined. The analyses of the effects of shrinkage pressure ranging from 4.4733 to 223.662 MPa on 11 different part models, established that the shrinkage pressure of 89.464 MPa generated the minimum SCF magnitude of 3.02. After analyzing 8 different circular cross bore size ratios ranging from 0.1 to 0.8, at the radial position, it was established that the hoop stress increases with an increase in a cross bore size. The smallest cross bore size ratio of 0.1 gave the lowest hoop stress and minimum SCF of 3.02. Whereas the highest stress was developed at the cross-size ratio of 0.8 with an SCF magnitude of 6.75. The minimum magnitude of SCF translates to a reduction of the pressure carrying capacity of the compound cylinder by 67% than a similar plain compound cylinder. Generally, offsetting of the circularly shaped cross bore from the radial position, led to a reduction of the magnitude of SCFs. For instance, from the 8 offset positions analyzed, the minimum SCF occurred at the offset position of 0.006 m with a magnitude of 2.50. This SCF magnitude indicated a reduction of pressure carrying capacity of 60% in comparison to a similar plain compound cylinder. Evaluation of 12 different diameter ratios of elliptical-shaped cross bore ranging from 0.5 to 10, at the radial position, established the lowest SCF magnitude of 1.33 that occurred at a diameter ratio of 5. Henceforth, this optimum diameter ratio was used for further analysis. This aforesaid SCF magnitude translated to a reduction of the pressure carrying capacity of the compound cylinder by 24.81% when compared to a similar plain compound cylinder. Besides, offsetting of elliptically shaped cross bore generally decreased the magnitudes of SCFs. Therefore, for elliptically shaped cross bore, the lowest SCF occurred at radial position with magnitude of 1.33. A general comparison between the effects of circular and elliptical cross bore, established that the elliptical-shaped cross bores generated both lower hoop stresses and SCFs than those of circularly shaped cross bores. On the other hand, oblique elliptical offset cross bores along the Z-axis of the compound cylinder led to an increase in SCFs. As the oblique angle increased from 0 0 to 75 0, the SCFs also increased progressively, however, there was a significant increase in SCF when the inclination angle increased from 60 0 to 75 0. The lowest and highest SCF magnitude was 1.52 and 1.92 at 15 0 and 6.19 at 75 0, respectively. Overall, the optimum geometric configuration of a cross bore in a thick compound cylinder was found to be elliptically shaped, offset at radial position which is an obliquity angle of 0 0 having a diameter ratio a/b of 5.
190

Suppression of vortex-induced vibration of a circular cylinder with fixed and rotating control cylinders. / Supressão de vibrações induzida por vortices em um cilindro com cilindros de controle fixos e rotativos.

Ortega, Mariana Silva 06 August 2015 (has links)
The offshore oil industry is engaged in the development of new floating platforms, such as Spar, semi-submersible, tension-leg, FPSO and monocolumn for the exploration of deep and ultra-deep waters. Some of these floating systems have circular cross sections (or cross sections of other bluff geometries) being susceptible to vortex-induced vibrations (VIV). Vortex shedding behind a bluff body can be altered, suppressed or controlled over a limited range of Reynolds numbers. Various flow-control techniques, which result in the reduction of drag and unsteady forces, have been suggested and tested in simple geometries. One such method is the moving-surface boundary layer control (MSBC), in which smaller control rotating cylinders are placed close to the bluff body. This method is considered as an inspiration for the present experimental investigation of VIV suppression for omni-directional flows. In this context, three different configurations have been assembled to compare the effect of suppression on a plain cylinder surrounded by two, four and eight control cylinders distributed symmetrically around it. Experiments were carried out with static models and models free to oscillate in one-degree-of-freedom with fixed and rotating control cylinders. Experiments with a plain cylinder were performed to serve as reference. Displacements, drag and lift forces were measured. The position of the control cylinders proved to be an important parameter to VIV suppression. Configurations with two control cylinders increased lift and drag forces. In contrast, configurations of four and eight control cylinders showed to be more effective to suppress VIV. Furthermore the results for all the cases of the configuration of eight fixed control cylinders presented a reduction of displacement amplitude, lift and drag forces when compared to a plain cylinder. However, when the control cylinders were actuated, the two cases with rotating control cylinders increased drag force when compared to fixed control cylinders. / A indústria offshore está envolvida no desenvolvimento de novas plataformas flutuantes como Spar, semi-submersível, TLP, FPSO e monocoluna para a exploração de águas profundas e ultra-profundas. Alguns destes sistemas flutuantes têm seções transversais circulares (ou de outras seções rombudas) sendo susceptíveis à vibrações induzidas por vórtices (VIV). A esteira de vórtices desprendida de um corpo rombudo pode ser alterada ou suprimida ao longo de uma faixa de número de Reynolds. Várias técnicas de controle do escoamento foram sugeridas e testadas em geometrias simples, resultando na redução de forças de sustentação e arrasto. Um desses métodos é o controle de camada limite por superfícies móveis (CCLSM), no qual cilindrinhos rotativos de controle são colocados próximos ao corpo rombudo. Neste trabalho, este método foi abordado através de uma investigação experimental como um supressor de VIV para o escoamento omnidirecional. Neste escopo três diferentes configurações foram montadas para comparar o efeito de supressão sobre um cilindro liso rodeado por dois, quatro e oito cilindros de controle, distribuídos simetricamente em torno dele. Foram realizados ensaios com o modelo estático, ensaios de VIV em um grau de liberdade com cilindros de controle fixos e rotativos. Foram medidos deslocamento e forças de sustentação e arrasto. Os resultados mostraram que a posição dos cilindros de controle é um parâmetro importante para a supressão de VIV. A configuração com dois cilindros de controle aumentou as forças de sustentação e arrasto. Diferentemente, as configurações de quatro e oito cilindros de controle mostraram-se mais eficazes para suprimir VIV. Além disso, todos os casos da configuração de oito cilindros de controle fixos apresentaram redução nas amplitudes de vibração e nas forças de sustentação e arrasto, quando comparados com um cilindro liso. No entanto, quando os cilindros de controle foram acionados para rotacionar, mostrou-se um aumento na força de arrasto em relação aos cilindros de controle fixos.

Page generated in 0.0851 seconds