• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rectangular slot fed asymmetric cylindrical dielectric resonator antenna for wideband applications

Majeed, Asmaa H., Abdullah, Abdulkareem S., Elmegri, Fauzi, Ibrahim, Embarak M., Sayidmarie, Khalil H., Abd-Alhameed, Raed January 2014 (has links)
No / Two Cylindrical Dielectric Resonators DR asymmetrically placed on a thin dielectric substrate and fed by a single rectangular slot for wideband wireless applications are presented. Optimized design procedures were applied within a well-known electromagnetic solver to achieve the improved elements dimensions of the antenna geometry. The simulated and measured results show that the proposed DRA can achieve 29% relative bandwidth at 10 dB return loss covering the spectrum range from 9.62 GHz to 12.9 GHz with a maximum gain of 8 dB.
2

Two Elements Elliptical Slot CDRA Array with Corporate Feeding For X-Band Applications

Abdullah, Abdulkareem S., Majeed, Asmaa H., Sayidmarie, Khalil H., Abd-Alhameed, Raed 04 1900 (has links)
Yes / In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dBi at frequency of 10.7GHz. This is about 2.06dBi enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 50 x 50mm2.
3

Balanced dual-segment cylindrical dielectric resonator antennas for ultra-wideband applications

Majeed, Asmaa H., Abdullah, Abdulkareem S., Sayidmarie, Khalil H., Abd-Alhameed, Raed, Elmegri, Fauzi, Noras, James M. 22 October 2015 (has links)
Yes / In this paper, balanced dual segment cylindrical dielectric antennas (CDRA) with ultra wide-band operation are reported. First a T-shaped slot and L-shaped microstrip feeding line are suggested to furnish a balanced coupling mechanism for feeding two DRAs. Performance of the proposed antenna was analyzed and optimized against the target frequency band. The proposed antenna was then modified by adding a C-shaped strip to increase the gain. The performances of both balanced antennas were characterized and optimized in terms of antenna reflection coefficient, radiation pattern, and gain. The antennas cover the frequency range from 6.4 GHz to 11.736 GHz, which is 58.7% bandwidth. A maximum gain of 2.66 dB was achieved at a frequency of 7 GHz with the first antenna, with a further 2.25 dB increase in maximum gain attained by adding the C-shaped strip. For validation, prototypes of the two antennas were fabricated and tested. The predicted and measured results showed reasonable agreement and the results confirmed good impedance bandwidth characteristics for ultra-wideband operation from both proposed balanced antennas.

Page generated in 0.1373 seconds