• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DYNAMIC REGULATION OF MITOCHONDRIAL STAT3 AND ITS ASSOCIATION WITH CYPD

Meier, Jeremy A. 01 January 2016 (has links)
In recent years, a number of nuclear transcription factors have been shown to be present in the mitochondria where they have distinct roles in regulating mitochondrial function. Signal Transducer and Activator of Transcription 3 (STAT3), classically activated by the JAK family of receptor associated tyrosine kinases to drive nuclear gene expression, is one such transcription factor with a unique mitochondrial role. There, it has been shown to support oxidative phosphorylation, regulate mitochondrial-encoded transcripts, and be key for the transformation and growth of a number of different cancers. Despite its well-characterized functional importance at the level of the mitochondria, the mechanism through which mitochondrial STAT3 acts and how it is regulated has not been as well studied. Using various cell culture models, we now show that mitochondrial STAT3 is dynamically regulated by oxidative stress and cytokine treatment in the acute setting. Under these conditions we have observed a rapid loss of mitochondrial STAT3 that recovers to baseline conditions with time. During this recovery phase we have noted that mitochondrial STAT3 becomes competent to bind to Cyclophilin D (CypD), the key regulator and activator of the mitochondrial permeability transition pore (MPTP). This is particularly the case with oxidative insults, which we believe may represent an important homeostatic mechanism for the cell. Intriguingly, chronic stimulation with certain stressors seems to increase mitochondrial STAT3 levels suggesting differential regulation in the acute versus chronic setting. The regulation of mitochondrial STAT3 levels by various stimuli points to a novel signaling pathway potentially linking mitochondrial responses with those of the cell. Unification of responses throughout the cell would seem to serve a clear adaptive advantage, particularly in coupling nuclear regulation with metabolic demands as dictated by the mitochondria. Extramitochondrial signaling, also known as the mitochondrial retrograde response, has emerged as an important homeostatic mechanism in lower organisms, but its signaling components have not been well characterized at the mammalian level. Our results point to a role for mitochondrial STAT3 in sensing cellular inputs, whereby its regulation and subsequent association with CypD may have implications in overall mitochondrial quality control. Though the inner workings of this signaling cascade are just beginning to be elucidated, they suggest the existence of a previously unappreciated pathway at the mitochondrial level.
2

Investigating protein-protein interactions in order to develop novel therapeutics for the treatment of Alzheimer's disease

Aitken, Laura January 2013 (has links)
Alzheimer's disease (AD) accounts for around two thirds of all dementia cases and an increase in life expectancy of the population has resulted in a substantial increase in dementia cases and with that a rise in AD. AD is a debilitating and ultimately fatal neurodegenerative disorder of the elderly, and despite being identified over a century ago, the current treatments do not treat the underlying causes behind the disease, instead they help to mask the symptoms of the disease and prolong the brain's remaining function. It is therefore vital that an effective, disease modifying treatment for this disease is established as soon as possible. Soluble intracellular forms of amyloid β (peptide Aβ), a hallmark of AD have been identified and intracellular targets of Aβ are being investigated as potential drug targets for the disease. Two key intracellular, mitochondrial proteins investigated as potential drug targets: amyloid binding alcohol dehydrogenase (ABAD) and cyclophilin D (CypD) are the focus of the work reported in this thesis. To begin identifying potential inhibitors of the ABAD-Aβ interaction, a two-pronged approach was taken. Firstly, a series of analogues based on a known inhibitor of the interaction were tested using a variety of biophysical assays, for their therapeutic affect on the interaction, and secondly a fragment based screening approach was used to identify new small molecule binding partners of ABAD which could potentially be modified to produced inhibitors of the ABAD-Aβ interaction. Three different CypD constructs have been successfully expressed and purified, and taken into crystal trials. It is hoped that these constructs can be used to significantly aid the progress of identifying any potential inhibitors and binding partners of CypD that may produce therapeutic effects, and in the future could lead to the identification of an effective disease modifying drug in the treatment of AD. The work reported in this thesis has built upon previously reported findings and the groundwork has also been established for several in vitro biophysical assays, these include for example: measuring ABAD enzyme activity, and the novel morphology specific Aβ aggregation assay, which can be used as screening tools to help identify potential inhibitors of these interactions. Both the ABAD-Aβ interaction, and the blockade of CypD are known to be drug targets in the treatment of AD, and by elucidating the molecular mechanisms behind these interactions, through implementing biophysical assays, this will help in the identification and design of potential new therapeutic agents for the treatment of AD.

Page generated in 0.0336 seconds