Spelling suggestions: "subject:"cytochrome 0.450 cometabolism"" "subject:"cytochrome 0.450 hypometabolism""
1 |
Molecular basis and structural determinants for the cellular localization of cytochrome P450 2E1 /Neve, Etienne P.A., January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 5 uppsatser.
|
2 |
Effects of Danshen and its active components on rat CYP2E1 expression and metabolism of model CYP2E1 probe substrate.January 2009 (has links)
Cheung, Ching Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 151-162). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 論文摘要 --- p.IV / ACKNOWLEDGEMENT --- p.VI / TABLE OF CONTENTS --- p.VII / ABBREVIATIONS --- p.X / Chapter Chapter 1 --- p.1 / GENERAL INTRODUCTION --- p.1 / Chapter 1.1 --- DANSHEN --- p.1 / Chapter 1.1.1 --- LIPID-SOLUBLE COMPOUNDS EXTRACTED FROM DANSHEN --- p.2 / Chapter 1.1.1.1 --- TANSHINONE I --- p.2 / Chapter 1.1.1.2 --- TANSHINONE IIA --- p.3 / Chapter 1.1.1.3 --- CRYPTOTANSHINONE --- p.3 / Chapter 1.1.1.4 --- DIHYDROTANSHINONE --- p.4 / Chapter 1.1.2 --- WATER-SOLUBLE COMPOUNDS EXTRACTED FROM DANSHEN --- p.4 / Chapter 1.1.2.1 --- DANSHENSU --- p.4 / Chapter 1.1.2.2 --- SALVIANOLIC ACID B --- p.5 / Chapter 1.2 --- DRUG-DRUG INTERACTIONS --- p.5 / Chapter 1.2.1 --- PROBLEMS ASSOCIATED WITH HERBAL ADMINISTRATION --- p.5 / Chapter 1.2.2 --- HERB-DRUG INTERACTIONS --- p.7 / Chapter 1.2.2.1 --- ST. JOHŃةS WORT-DRUG INTERACTIONS --- p.8 / Chapter 1.2.2.2 --- WARFARIN-HERB INTERACTIONS --- p.9 / Chapter 1.2.2.3 --- DANSHEN-WARFARIN INTERACTIONS --- p.10 / Chapter 1.2.2.4 --- DANSHEN-DRUG INTERACTIONS --- p.11 / Chapter 1.3 --- CYTOCHROME P450 ENZYMES (CYP) --- p.12 / Chapter 1.3.1 --- CYTOCHROME P4502E1 --- p.13 / Chapter 1.4 --- AIMS OF STUDY --- p.17 / Chapter Chapter 2 --- p.21 / EFFECTS OF DANSHEN AND SOME IF ITS ACTIVE COMPONENTS ON CHLORZOXAZONE METABOLISM IN RAT AND HUMAN LIVER MICROSOMES IN VITRO --- p.21 / Chapter 2.1 --- INTRODUCTION --- p.21 / Chapter 2.2 --- MATERIALS AND METHODS --- p.23 / Chapter 2.2.1 --- CHEMICALS AND REAGENTS --- p.23 / Chapter 2.2.2 --- PREPARATION OF AQUEOUS FRACTION OF DANSHEN --- p.23 / Chapter 2.2.3 --- PREPARATION OF ETHANOLIC FRACTION OF DANSHEN --- p.23 / Chapter 2.2.4 --- ANIMALS --- p.24 / Chapter 2.2.5 --- PREPARATION OF RAT LIVER MICROSOMES --- p.25 / Chapter 2.2.6 --- POOLED HUMAN LIVER MICROSOMES --- p.25 / Chapter 2.2.7 --- PROTEIN ASSAY --- p.25 / Chapter 2.2.8 --- MICROSOMAL INCUBATION --- p.26 / Chapter 2.2.8.1 --- RAT LIVER MICROSOMES --- p.26 / Chapter 2.2.8.2 --- HUMAN LIVER MICROSOMES --- p.26 / Chapter 2.2.9 --- INHIBITION KINETICS STUDIES --- p.27 / Chapter 2.2.9.1 --- RAT LIVER MICROSOMES --- p.27 / Chapter 2.2.9.2 --- HUMAN LIVER MICROSOMES --- p.27 / Chapter 2.2.10 --- HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ANALYSIS --- p.28 / Chapter 2.2.11 --- DATA ANALYSIS --- p.28 / Chapter 2.3 --- RESULTS --- p.31 / Chapter 2.3.1 --- EFFECT OF DANSHEN AND TANSHINONES ON RAT CYP2E1 ACTIVITY IN VITRO / Chapter 2.3.1.1 --- SUMMARY --- p.57 / Chapter 2.3.2 --- EFFECT OF DANSHEN AND TANSHINONES ON HUMAN CYP2E1 ACTIVITYIN VITRO --- p.58 / Chapter 2.3.2.1 --- SUMMARY --- p.84 / Chapter 2.4 --- DISCUSSION --- p.85 / Chapter Chapter 3 --- p.93 / EFFECTS OF DANSHEN ON CYTOCHROME P450 PROTEIN EXPRESSION AND METABOLISM OF MODEL CYP2E1 PROBE SUBSTRATE IN THE RAT IN VIVO --- p.93 / Chapter 3.1 --- INTRODUCTION --- p.93 / Chapter 3.2 --- MATERIALS AND METHODS --- p.97 / Chapter 3.2.1 --- CHEMICALS AND REAGENTS --- p.97 / Chapter 3.2.2 --- ANIMALS --- p.97 / Chapter 3.2.3 --- EFFECTS OF DANSHEN TREATMENTS ON PHARMACOKINETICS OF CHLORZOXAZONE IN RATS IN VIVO --- p.98 / Chapter 3.2.3.1 --- "ACUTE, 3-DAY AND 14-DAY TREATMENTS WITH WHOLE DANSHEN EXTRACT" --- p.98 / Chapter 3.2.3.2 --- PLASMA EXTRACTION --- p.99 / Chapter 3.2.3.3 --- HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ANALYSIS --- p.99 / Chapter 3.2.4 --- EFFECTS OF 3-DAY AND 14-DAY DANSHEN TREATMENTS ON CYP2E1 PROTEIN EXPRESSION --- p.101 / Chapter 3.2.4.1 --- PREPARATION OF RAT LIVER MICROSOMES FOR WESTERN BLOTTING --- p.101 / Chapter 3.2.4.2 --- PROTEIN ASSAY --- p.101 / Chapter 3.2.4.3 --- WESTERN BLOT --- p.102 / Chapter 3.2.5 --- DATA ANALYSIS --- p.103 / Chapter 3.3 --- RESULTS --- p.105 / Chapter 3.3.1 --- EFFECTS OF WHOLE DANSHEN EXTRACT ON RAT CYP2E1 ACTIVITIES IN VIVO --- p.105 / Chapter 3.3.1.1 --- EFFECTS OF ACUTE TREATMENTS OF WHOLE DANSHEN EXTRACT ON PHARMACOKINETICS OF CHLORZOXAZONE --- p.105 / Chapter 3.3.1.2 --- EFFECTS OF 3-DAY TREATMENTS OF WHOLE DANSHEN EXTRACT ON PHARMACOKINETICS OF CHLORZOXAZONE --- p.106 / Chapter 3.3.1.3 --- EFFECTS OF 14-DAY TREATMENTS OF WHOLE DANSHEN EXTRACT ON PHARMACOKINETICS OF CHLORZOXAZONE --- p.107 / Chapter 3.3.2 --- EFFECTS OF WHOLE DANSHEN EXTRACT ON RAT CYP2E1 EXPRESSION .… --- p.137 / Chapter 3.3.3 --- SUMMARY --- p.140 / Chapter 3.4 --- DISCUSSION --- p.141 / CHAPTER 4 --- p.145 / GENERAL DISCUSSION --- p.145 / REFERENCES --- p.151
|
3 |
Use of cytochrome P450 2E1 (CYP2E1) knockout transgenic mouse model to study the role of CYP2E1 in carbon tetrachloride- and alcohol-mediated hepatotoxicity.January 1998 (has links)
by Wong Wing-yee, Felice. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 144-166). / Abstract also in Chinese. / Acknowledgements --- p.i / List of Abbreviations --- p.ii / Abstract --- p.iv / Abstract (Chinese Version) --- p.vi / Table of Contents --- p.viii / List of Tables --- p.xii / List of Figures --- p.xiv / List of Appendices --- p.xvi / Chapter Chapter I --- Literature Review / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Background of Cytochrome P450 --- p.3 / Chapter 2.1 --- Discovery --- p.3 / Chapter 2.2 --- Tissue Distribution --- p.3 / Chapter 2.3 --- Structure and Functions --- p.7 / Chapter 2.4 --- Nomenclature of the P450 Superfamily --- p.10 / Chapter 3. --- Cytochrome P450 2E1 (CYP2E1) --- p.11 / Chapter 3.1 --- Discovery --- p.11 / Chapter 3.2 --- Tissue Distribution --- p.12 / Chapter 3.3 --- Substrates and Inducers --- p.13 / Chapter 3.4 --- Toxicological Role of CYP2E1 --- p.15 / Chapter 4. --- CYP2E1-knockout Mouse Model --- p.17 / Chapter Chapter II --- Carbon Tetrachloride (CC14) Study / Chapter 1. --- Introduction --- p.19 / Chapter 1.1 --- General Properties and Usage of CC14 --- p.19 / Chapter 1.2 --- Toxicological Aspects of CC14 --- p.19 / Chapter 1.3 --- Mechanism of CCl4-induced Hepatotoxicity --- p.20 / Chapter 1.4 --- Role of CYP2E1 in CCl4-induced Hepatotoxicity --- p.23 / Chapter 1.5 --- Objectives of the Study --- p.27 / Chapter 2. --- Materials and Methods --- p.29 / Chapter 2.1 --- Chemicals and Materials --- p.29 / Chapter 2.2 --- Animals --- p.29 / Chapter 2.3 --- Acute CC14 Treatment --- p.29 / Chapter 2.4 --- Preparation of Microsomal Fractions --- p.30 / Chapter 2.5 --- Determination of Microsomal Protein Concentration --- p.31 / Chapter 2.6 --- Determination of Serum Aminotransferase Activities --- p.31 / Chapter 2.7 --- Liver Histology --- p.32 / Chapter 2.8 --- Hepatic Microsomal CYP2E1 Activity -p-nitrophenol Assay --- p.34 / Chapter 2.9 --- SDS-PAGE and Western Blot Analysis --- p.35 / Chapter 2.10 --- Detection of Lipid Peroxidation in vitro and in vivo --- p.35 / Chapter 2.10.1 --- In vitro Lipid Peroxidation - 2-Thiobarbituric Acid (TBA) assay --- p.35 / Chapter 2.10.2 --- In vivo Lipid Peroxidation - Microsomal Conjugated Dienes Detection --- p.36 / Chapter 2.11 --- Hepatic Lipid Fatty Acid Composition Analysis --- p.39 / Chapter 2.11.1 --- Lipid Extraction --- p.39 / Chapter 2.11.2 --- Thin Layer Chromatography --- p.39 / Chapter 2.11.3 --- Methylation --- p.40 / Chapter 2.11.4 --- Gas Chromatography --- p.40 / Chapter 2.12 --- Statistical Analysis --- p.41 / Chapter 3. --- Results --- p.42 / Chapter 3.1 --- "Mortality, Liver Weight and Liver Color" --- p.42 / Chapter 3.2 --- Hepatotoxicity --- p.42 / Chapter 3.2.1 --- Serum ALT and AST activities --- p.42 / Chapter 3.2.2 --- Liver Histology --- p.45 / Chapter 3.3 --- CYP2E1-catalysed PNP Activities and CYP2E1 Protein Levels --- p.49 / Chapter 3.3.1 --- CYP2El-catalyzed PNP Activities --- p.49 / Chapter 3.3.2 --- CYP2E1 Protein Levels --- p.52 / Chapter 3.4 --- Lipid Peroxidation --- p.52 / Chapter 3.4.1 --- In vitro Lipid Peroxidation --- p.52 / Chapter 3.4.2 --- In vivo Lipid Peroxidation --- p.54 / Chapter 3.5 --- Hepatic Lipid Fatty Acid Composition --- p.56 / Chapter 3.5.1 --- Fatty Acid Composition in Hepatic Phospholipid --- p.56 / Chapter 3.5.2 --- Fatty Acid Composition in Hepatic Microsomal Phospholipid --- p.59 / Chapter 3.5.3 --- Fatty Acid Composition in Hepatic Triglyceride --- p.61 / Chapter 4. --- Discussion --- p.63 / Chapter 4.1 --- CYP2E1 is Required in CCl4-mediated Hepatotoxicity --- p.63 / Chapter 4.2 --- CYP2E1 is Degraded following CC14 Exposure --- p.65 / Chapter 4.3 --- CYP2E1 is Required in CCl4-induced Lipid Peroxidation --- p.67 / Chapter 4.4 --- CYP2E1 is Required in CCl4-induced Hepatic Phospholipid Depletion --- p.70 / Chapter 4.5 --- CYP2E1 is Required in CCl4-induced Hepatic Triglyceride Accumulation --- p.72 / Chapter 5. --- Conclusion --- p.76 / Chapter Chapter III --- Chronic Ethanol Consumption Study / Chapter 1. --- Introduction --- p.77 / Chapter 1.1 --- Multiple Metabolic Pathways for Ethanol Metabolism --- p.77 / Chapter 1.2 --- Metabolism of Ethanol by the Microsomal Ethanol Oxidizing System --- p.79 / Chapter 1.3 --- Role of CYP2E1 in Ethanol Metabolism --- p.82 / Chapter 1.4 --- Role of CYP2E1 in Alcoholic Liver Disease and Associated Oxidative Stress --- p.84 / Chapter 1.5 --- Objectives of the Study --- p.89 / Chapter 2. --- Materials and Methods --- p.90 / Chapter 2.1 --- Chemicals and Materials --- p.90 / Chapter 2.2 --- Animals --- p.90 / Chapter 2.3 --- Chronic Ethanol Treatment --- p.90 / Chapter 2.3.1 --- Ethanol Diet Composition --- p.90 / Chapter 2.3.2 --- Ethanol Feeding --- p.90 / Chapter 2.4 --- Monitoring of Blood Ethanol Levels --- p.96 / Chapter 2.5 --- Preparation of Microsomal Fractions --- p.96 / Chapter 2.6 --- Determination of Microsomal Protein Concentration --- p.97 / Chapter 2.7 --- Determination of Serum Aminotransferase Activities --- p.98 / Chapter 2.8 --- Liver Histology --- p.98 / Chapter 2.9 --- SDS-PAGE and Western Blot Analysis --- p.99 / Chapter 2.10 --- Hepatic Fatty Acid Composition Analysis --- p.100 / Chapter 2.10.1 --- Lipid Extraction --- p.100 / Chapter 2.10.2 --- Thin Layer Chromatography --- p.101 / Chapter 2.10.3 --- Methylation --- p.101 / Chapter 2.10.4 --- Gas Chromatography --- p.102 / Chapter 2.11 --- Statistical Analysis --- p.103 / Chapter 3. --- Results --- p.104 / Chapter 3.1 --- Average Food Consumption --- p.104 / Chapter 3.2 --- Average Ethanol Consumption for Ethanol Liquid Diet Feeding Group --- p.104 / Chapter 3.3 --- Body Weight Gain --- p.104 / Chapter 3.4 --- Blood Ethanol Levels --- p.108 / Chapter 3.5 --- "Mortality, Liver Weight and Liver Color" --- p.108 / Chapter 3.6 --- Serum ALT and AST Activities --- p.110 / Chapter 3.7 --- Liver Histology --- p.114 / Chapter 3.8 --- Western Blot Analysis --- p.119 / Chapter 3.9 --- Hepatic Lipid Fatty Acid Composition --- p.119 / Chapter 3.9.1 --- Fatty Acid Composition in Hepatic Phospholipid --- p.119 / Chapter 3.9.2 --- Fatty Acid Composition in Hepatic Triglyceride --- p.123 / Chapter 4. --- Discussion --- p.126 / Chapter 4.1 --- Nutrients Displacement after Chronic Ethanol Consumption --- p.126 / Chapter 4.2 --- Varied Blood Ethanol Levels after Chronic Ethanol Consumption --- p.127 / Chapter 4.3 --- Increase in CYP2E1 Levels after Chronic Feeding of Ethanolin WT mice --- p.127 / Chapter 4.4 --- Lack of Evidence Indicating the Development of Ethanol- Induced Liver Injury --- p.129 / Chapter 4.4.1 --- No Elevations in Serum ALT and AST Activities --- p.129 / Chapter 4.4.2 --- Normal Liver Histology --- p.130 / Chapter 4.4.3 --- Lack of Triglyceride Accumulation --- p.131 / Chapter 4.4.4 --- Elevations in Hepatic PL --- p.132 / Chapter 4.5 --- Possible Reasons for the Absence of Liver Damage after Chronic Ethanol Consumption in our Mouse Model --- p.134 / Chapter 5. --- Conclusion --- p.137 / Chapter Chapter IV --- Concluding Remarks / Chapter 1. --- A Comparison between Acute CC14 Study and Chronic Ethanol Consumption Study --- p.139 / Chapter 1.1 --- Regulation of CYP2E1 Expression --- p.139 / Chapter 1.2 --- Free Radical Production Involved in CC14- and Chronic Ethanol Consumption-Mediated Liver Injury --- p.140 / Chapter 1.3 --- An Overall Comparison between CC14 study and Chronic Ethanol Consumption Study --- p.140 / Chapter 2. --- Future Studies --- p.142 / Chapter 2.1 --- Acute CC14 Study --- p.142 / Chapter 2.1.1 --- Calcium Homeostasis Studies --- p.142 / Chapter 2.1.2 --- Spin Trapping Studies --- p.142 / Chapter 2.2 --- Chronic Ethanol Study --- p.142 / Chapter 2.2.1 --- "Generation of a Heterozygous ""Ethanol-Sensitive"" Mouse Strain (SV/129/ter x C57BL/6)" --- p.143 / Chapter 3. --- Concluding Remarks --- p.143 / References --- p.144 / Appendix --- p.167
|
4 |
Identification of CYP2E1-dependent genes involved in carbon tetrachloride-induced hepatotoxicity.January 2001 (has links)
Yang Lei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 141-148). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abstract (Chinese Version) --- p.iv / Table of Contents --- p.vi / List of Abbreviations --- p.xii / List of Figures --- p.xiii / List of Tables --- p.xviii / Chapter Chapter 1 --- Literature review --- p.1 / Chapter 1.1 --- Carbon tetrachloride (CC14) --- p.1 / Chapter 1.2 --- Major uses of CC14 --- p.1 / Chapter 1.3 --- Potential human exposure pathways to CC14 --- p.2 / Chapter 1.4 --- Toxicity of CC14 --- p.3 / Chapter 1.5 --- Mechanism of CCl4-induced hepatotoxicity --- p.5 / Chapter 1.6 --- Role of CYP2E1 involved in CCl4-induced hepatotoxicity --- p.7 / Chapter 1.7 --- Definite proof of the involvement of CYP2E1 in CCl4-induced hepatotoxicity by CYP2El-null mouse in vivo model --- p.10 / Chapter 1.8 --- Identification of CYP2E1 -dependent genes involved in CCl4-induced hepatotoxicity by fluorescent differential display (FDD) --- p.11 / Chapter 1.9 --- Objectives of the study --- p.14 / Chapter Chapter 2 --- Materials and methods --- p.16 / Chapter 2.1 --- Animals and treatments --- p.16 / Chapter 2.1.1 --- Materials --- p.16 / Chapter 2.1.2 --- Methods --- p.16 / Chapter 2.2 --- Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) analyses --- p.17 / Chapter 2.2.1 --- Materials --- p.17 / Chapter 2.2.2 --- Methods --- p.17 / Chapter 2.2.2.1 --- Serum preparation --- p.17 / Chapter 2.2.2.2 --- Activity determination --- p.18 / Chapter 2.3 --- Tail-genotyping by PCR --- p.18 / Chapter 2.3.1 --- Materials --- p.18 / Chapter 2.3.2 --- Methods --- p.20 / Chapter 2.3.2.1 --- Preparation of genomic DNA from mouse tail --- p.20 / Chapter 2.3.2.2 --- PCR reaction --- p.20 / Chapter 2.4 --- Total RNA isolation --- p.21 / Chapter 2.4.1 --- Materials --- p.21 / Chapter 2.4.2 --- Methods --- p.21 / Chapter 2.5 --- DNase I treatment --- p.23 / Chapter 2.5.1 --- Materials --- p.23 / Chapter 2.5.2 --- Methods --- p.23 / Chapter 2.6 --- Reverse transcnption of mRNA and amplification by fluorescent PCR amplification --- p.26 / Chapter 2.6.1 --- Materials --- p.27 / Chapter 2.6.2 --- Methods --- p.27 / Chapter 2.7 --- Fluorescent differential display (FDD) --- p.28 / Chapter 2.7.1 --- Materials --- p.28 / Chapter 2.7.2 --- Methods --- p.28 / Chapter 2.8 --- Excision of differentially expressed cDNA fragments --- p.29 / Chapter 2.8.1 --- Materials --- p.29 / Chapter 2.8.2 --- Methods --- p.29 / Chapter 2.9 --- Reamplification of differentially expressed cDNA fragments --- p.34 / Chapter 2.9.1 --- Materials --- p.34 / Chapter 2.9.2 --- Methods --- p.34 / Chapter 2.10 --- Subcloning of reamplified cDNA fragments --- p.36 / Chapter 2.10.1 --- Materials --- p.36 / Chapter 2.10.2 --- Methods --- p.37 / Chapter 2.11 --- Purification of plasmid DNA from recombinant clones --- p.39 / Chapter 2.11.1 --- Materials --- p.39 / Chapter 2.11.2 --- Methods --- p.39 / Chapter 2.12 --- DNA sequencing of differentially expressed cDNA fragments --- p.40 / Chapter 2.12.1 --- Materials --- p.40 / Chapter 2.12.2 --- Methods --- p.40 / Chapter 2.12.3 --- BLAST search against the GenBank DNA databases --- p.41 / Chapter 2.13 --- Northern blot analysis of differentially expressed cDNA fragments --- p.41 / Chapter 2.13.1 --- Formaldehyde gel electrophoresis of total RNA --- p.41 / Chapter 2.13.1.1 --- Materials --- p.42 / Chapter 2.13.1.2 --- Methods --- p.42 / Chapter 2.13.2 --- Preparation of cDNA probes for hybridization --- p.42 / Chapter 2.13.2.1 --- EcoRI digestion of cDNA inserts from plasmid DNA --- p.42 / Chapter 2.13.2.1.1 --- Materials --- p.42 / Chapter 2.13.2.1.2 --- Methods --- p.43 / Chapter 2.13.2.2 --- Purification of DNA from agarose gel --- p.43 / Chapter 2.13.2.2.1 --- Materials --- p.43 / Chapter 2.13.2.2.2 --- Methods --- p.43 / Chapter 2.13.2.3 --- DIG labeling of cDNA --- p.44 / Chapter 2.13.2.3.1 --- Materials --- p.44 / Chapter 2.13.2.3.2 --- Methods --- p.44 / Chapter 2.13.3 --- Hybridization --- p.45 / Chapter 2.13.3.1 --- Materials --- p.45 / Chapter 2.13.3.2 --- Methods --- p.45 / Chapter Chapter 3 --- Results --- p.47 / Chapter 3.1 --- Liver morphology --- p.47 / Chapter 3.2 --- Serum ALT and AST activities --- p.47 / Chapter 3.3 --- Tail-genotyping by PCR --- p.51 / Chapter 3.4 --- DNase I treatment --- p.51 / Chapter 3.5 --- FDD RT-PCR and excision of differentially expressed cDNA fragments --- p.51 / Chapter 3.6 --- Reamplification of excised cDNA fragments --- p.61 / Chapter 3.7 --- Subcloning of reamplified cDNA fragments --- p.61 / Chapter 3.8 --- DNA sequencing of subcloned cDNA fragments --- p.69 / Chapter 3.9 --- Confirmation of differentially expressed patterns by Northern blot analysis --- p.106 / Chapter 3.10 --- Temporal expression of differentially expressed genes --- p.113 / Chapter 3.11 --- Tissue distribution of differentially expressed genes --- p.117 / Chapter Chapter 4 --- Discussion --- p.125 / Chapter 4.1 --- Liver morphology and serum ALT and AST activities --- p.126 / Chapter 4.2 --- Identification of CYP2E1 -dependent genes involved in CCl4-induced hepatotoxicity --- p.127 / Chapter 4.3 --- Functional roles of the identified differentially expressed genes --- p.129 / Chapter 4.3.1 --- Fragment B4 --- p.129 / Chapter 4.3.2 --- Fragment C12 --- p.130 / Chapter 4.3.3 --- Fragment B13 --- p.131 / Chapter 4.3.4 --- Fragment A5 --- p.132 / Chapter 4.4 --- Temporal expression of differentially expressed genes --- p.133 / Chapter 4.4.1 --- Fragment B4 --- p.133 / Chapter 4.4.2 --- Fragment C12 --- p.134 / Chapter 4.4.3 --- Fragment B13 --- p.134 / Chapter 4.4.4 --- Fragment A5 --- p.135 / Chapter 4.5 --- Tissue distribution of differentially expressed genes --- p.136 / Chapter 4.5.1 --- Fragment B4 --- p.136 / Chapter 4.5.2 --- Fragment C12 --- p.136 / Chapter 4.5.3 --- Fragment B13 --- p.137 / Chapter 4.5.4 --- Fragment A5 --- p.137 / Chapter 4.5.5 --- Roles of the identified genes involved in CCl4-induced hepatotoxicity --- p.138 / Chapter 4.6 --- Normalization of Northern blot analysis --- p.13 8 / Chapter 4.7 --- Limitations of FDD technique to identify differentially expressed genes --- p.138 / Chapter 4.8 --- Future studies --- p.139 / Chapter 4.8.1 --- Investigation of the differential expression patterns of the identified genes in acetaminophen-induced liver injury --- p.139 / Chapter 4.8.2 --- Dot blot analysis --- p.140 / Chapter 4.8.3 --- DNA microarray --- p.140 / References --- p.141
|
Page generated in 0.0829 seconds