• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of small molecule heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2

Hum, MAAIKE 18 November 2009 (has links)
Heme oxygenases (HO) catalyze the degradation of heme into biliverdin, carbon monoxide (CO) and free iron. The two major isoforms, HO-2 (constitutive) and HO-1 (inducible by various stressors such as heavy metals and reactive oxygen species) are involved in a variety of physiological functions, including anti-inflammation, antiapoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (CYPs), soluble guanylyl cyclase (sGC), and nitric oxide synthase (NOS). Our laboratory has been able to successfully synthesize a series of small molecule non-porphyrin HO inhibitors (QC-xx) that have had little or no effect against sGC and NOS; however, their effects on various CYP isoforms has yet to be fully elucidated. In order to determine the effects on CYP enzyme activity, microsomal preparations of two CYP isoforms (2E1 and 3A1/3A2) were incubated with varying concentrations of HO inhibitor and the activity was determined via spectrophotometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of CYP2E1 and/or CYP3A1/2, while some others did inhibit these CYP isoforms. Four regions of interest were analyzed further and several structural changes were identified as conferring increased HO inhibition and decreased effect on both CYP2E1 and 3A1/2. Based on the information obtained, three putative compounds were designed and it is hypothesized that these compounds will be selective inhibitors for HO-1 over HO-2 and will display little effect on either CYP2E1 or 3A1/2 activities. / Thesis (Master, Pharmacology & Toxicology) -- Queen's University, 2008-11-20 11:19:48.841

Page generated in 0.0628 seconds