• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • Tagged with
  • 21
  • 21
  • 13
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Teoretická studie enzymů spojených s procesem karcinogeneze: DNA polymerázy β a cytochromů P450 / Theoretical study of enzymes related to carcinogenesis: DNA polymerase β and cytochromes P450

Jeřábek, Petr January 2012 (has links)
Present doctoral thesis contributed to understanding of mechanistic principles of two enzymes participating in the process of carcinogenesis; DNA polymerase  (pol ) and cytochromes P450 (CYP). Pol  is part of the DNA base-excision repair mechanism (BER). The primary role of pol  in, the BER mechanism, is inserting a new nucleotide into a DNA strand according to Watson-Crick base pairing rules. Pol  plays an important role in the process of carcinogenesis, approximately 30 % of human tumors express pol  mutants. The ability of pol  to discriminate between "right" and "wrong" nucleotide during the insertion process is called fidelity. We employed computational methods to elucidate molecular basis of the fidelity of pol . First, the relative free energy calculation method LRA was employed to compare differences in free energies between the "right" and "wrong" nucleotide during its insertion into DNA. The results indicated a better stabilization of transition-state of the nucleophilic substitution catalyzed by pol  in the case of the "right" versus "wrong" nucleotide. This difference resulted in an 80-fold contribution to its fidelity. Further, computational methods FEP and LIE were used to examine how mutations effect fidelity of pol . Results were than correlated with experimental data...

Page generated in 0.0416 seconds