Spelling suggestions: "subject:"cytokine receptor"" "subject:"zytokine receptor""
1 |
Functional characterization and molecular identification of neuroprotective receptors for erythropoietin-like ligandsHahn, Nina 12 December 2021 (has links)
No description available.
|
2 |
Effects of interleukin-27 on human CD8 T CellsYaneva, Teodora January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
Effects of interleukin-27 on human CD8 T CellsYaneva, Teodora January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Early events in cytokine receptor signalingGandhi, Hetvi 04 March 2014 (has links) (PDF)
Ligand-activated signal transduction is a process critical to cell survival and function as it serves as a means of communication between the cells and their environment. Endocytosis is generally thought to down-regulate incoming signals by reducing the surface availability of receptors. However, increasing evidence in many systems suggests a notion which is referred to as the „signalling endosome" hypothesis - that endocytosis can also actively contribute to signalling apart from clearance of activated receptors and thereby attenuation of signalling. The functional aspect of signalling endosomes has been well-characterized in several pathways including RTK and TGF-β signalling. There are, however, various other signalling pathways where the active mechanism of endocytotic regulation is yet to be understood.
In this study, we probe this aspect in the cytokine signalling system, where the receptors are known to internalize but the significance of such internalization and precise mechanism is unclear. My thesis aims to elucidate the function and molecular details of internalization of cytokine receptor using interleukin-4 receptor (IL-4R) signalling as a model. IL-4 and IL-13 ligands can induce assembly of three distinct complexes: IL4 induced IL-4Rα – IL-2Rγ (type I), IL-4 induced IL-4Rα – IL-13Rα1 (type II) or the IL-13 induced IL-13Rα1-IL-4Rα (type II). The formation of any of these complexes triggers signalling through the JAK/STAT pathway. However, models of how the oligomerization of the transmembrane receptors and activation takes place are very diverse and lack a clear molecular and biophysical understanding of the underlying receptor dynamics.
Previous results of the lab had shown that the affinities between subunits are low, precluding complex formation at the plasma membrane at physiological concentrations. In addition, IL-4R subunits localize in to endosomal structures adjacent to the plasma membrane. It had already been shown that the shared IL-4R subunit IL-2Rγ is internalized by a specific, actin dependent, Rac1/Pak1 regulated endocytosis route in the IL-2 context. We could show that pharmacological suppression of this endocytosis pathway also prevented IL-4 induced JAK/STAT signalling, placing endocytosis upstream of signalling.
Here I show using immuno-EM techniques that these endosomal structures are multivesicular bodies. Importantly, I could show that receptor subunits are highly enriched in the limiting membrane of these endosomes relative to the adjacent plasma membrane. Using quantitative loading assays I could furthermore demonstrate that this enrichment is achieved by constitutive internalization of receptors from the cell surface into cortical endosomes. The trafficking kinetics of the receptor subunits is independent of ligand occupancy. Pharmacological inhibition shows that receptors and ligand traffic via the previously identified Rac1/Pak1 pathway. Finally, Vav2 was identified as a candidate Guanine Exchange Factor (GEF) that may regulate Rac1 activity and thereby control the actin polymerization cascade driving IL-4R endocytosis. Immunoprecipitations showed that Vav2 interacts both with the cytoplasmic tail region of the receptors and the receptor associated 2 kinase JAK3. Vav2 may thus couple the receptor/JAK complexes to the Rac1/Pak1 mediated endocytosis route.
Taken together, our results suggests that stable „signalling endosomes‟ adjacent to the plasma membrane act as enrichment centres, where ligand and receptor concentrations are locally increased by constitutive trafficking. The confined environment of the endosome then compensates for the weak affinities between the ligand and receptor and facilitates ligand-mediated receptor dimerization. Importantly, overexpression of both type II IL-4R subunits renders signal transduction resistant to endocytosis inhibition, strongly suggesting that the critical factor effecting signalling is sufficient concentration, which the endosomes facilitate achieving. The endosomes are thus dispensable as signalling scaffolds when the receptors are in sufficient concentration, where activated receptors could interact with downstream pathway components.
Endocytosis thus provides a crucial means for the signalling process to overcome the thermodynamic hurdles for receptor oligomerization. In conclusion, our data propose a novel, purely thermodynamic role of endosomes in regulating cytokine receptor signalling not seen in any other signalling pathway.
|
5 |
Leukemia inhibitor factor (LIF) and gp130 in early defence against HIV-1 infection /Tjernlund, Annelie, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 4 uppsatser.
|
6 |
The signal transducing receptor gp130 is essential for protection of retinal neurons from stress-induced cell death but not for retinal developmentSaadi, Anisse. January 2009 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 143-161.
|
7 |
Early events in cytokine receptor signalingGandhi, Hetvi 27 February 2014 (has links)
Ligand-activated signal transduction is a process critical to cell survival and function as it serves as a means of communication between the cells and their environment. Endocytosis is generally thought to down-regulate incoming signals by reducing the surface availability of receptors. However, increasing evidence in many systems suggests a notion which is referred to as the „signalling endosome" hypothesis - that endocytosis can also actively contribute to signalling apart from clearance of activated receptors and thereby attenuation of signalling. The functional aspect of signalling endosomes has been well-characterized in several pathways including RTK and TGF-β signalling. There are, however, various other signalling pathways where the active mechanism of endocytotic regulation is yet to be understood.
In this study, we probe this aspect in the cytokine signalling system, where the receptors are known to internalize but the significance of such internalization and precise mechanism is unclear. My thesis aims to elucidate the function and molecular details of internalization of cytokine receptor using interleukin-4 receptor (IL-4R) signalling as a model. IL-4 and IL-13 ligands can induce assembly of three distinct complexes: IL4 induced IL-4Rα – IL-2Rγ (type I), IL-4 induced IL-4Rα – IL-13Rα1 (type II) or the IL-13 induced IL-13Rα1-IL-4Rα (type II). The formation of any of these complexes triggers signalling through the JAK/STAT pathway. However, models of how the oligomerization of the transmembrane receptors and activation takes place are very diverse and lack a clear molecular and biophysical understanding of the underlying receptor dynamics.
Previous results of the lab had shown that the affinities between subunits are low, precluding complex formation at the plasma membrane at physiological concentrations. In addition, IL-4R subunits localize in to endosomal structures adjacent to the plasma membrane. It had already been shown that the shared IL-4R subunit IL-2Rγ is internalized by a specific, actin dependent, Rac1/Pak1 regulated endocytosis route in the IL-2 context. We could show that pharmacological suppression of this endocytosis pathway also prevented IL-4 induced JAK/STAT signalling, placing endocytosis upstream of signalling.
Here I show using immuno-EM techniques that these endosomal structures are multivesicular bodies. Importantly, I could show that receptor subunits are highly enriched in the limiting membrane of these endosomes relative to the adjacent plasma membrane. Using quantitative loading assays I could furthermore demonstrate that this enrichment is achieved by constitutive internalization of receptors from the cell surface into cortical endosomes. The trafficking kinetics of the receptor subunits is independent of ligand occupancy. Pharmacological inhibition shows that receptors and ligand traffic via the previously identified Rac1/Pak1 pathway. Finally, Vav2 was identified as a candidate Guanine Exchange Factor (GEF) that may regulate Rac1 activity and thereby control the actin polymerization cascade driving IL-4R endocytosis. Immunoprecipitations showed that Vav2 interacts both with the cytoplasmic tail region of the receptors and the receptor associated 2 kinase JAK3. Vav2 may thus couple the receptor/JAK complexes to the Rac1/Pak1 mediated endocytosis route.
Taken together, our results suggests that stable „signalling endosomes‟ adjacent to the plasma membrane act as enrichment centres, where ligand and receptor concentrations are locally increased by constitutive trafficking. The confined environment of the endosome then compensates for the weak affinities between the ligand and receptor and facilitates ligand-mediated receptor dimerization. Importantly, overexpression of both type II IL-4R subunits renders signal transduction resistant to endocytosis inhibition, strongly suggesting that the critical factor effecting signalling is sufficient concentration, which the endosomes facilitate achieving. The endosomes are thus dispensable as signalling scaffolds when the receptors are in sufficient concentration, where activated receptors could interact with downstream pathway components.
Endocytosis thus provides a crucial means for the signalling process to overcome the thermodynamic hurdles for receptor oligomerization. In conclusion, our data propose a novel, purely thermodynamic role of endosomes in regulating cytokine receptor signalling not seen in any other signalling pathway.
|
8 |
Spatiotemporal Dynamics of Assembly and Activation of Class II Cytokine ReceptorsSotolongo Bellón, Junel 15 July 2022 (has links)
Class II cytokine receptors are important pleiotropic regulators of the immune system that play a central role in pathogen defense, tumor surveillance and immune system homeostasis. Most of these activities are very promising for biomedical applications, which, however, have so far failed to succeed due to severe undesired side effects resulting from the pleiotropic nature of these cytokine receptors. Controlling the functional plasticity of class I/II cytokine receptor signaling by engineered cytokines has recently emerged as a promising approach to selectively reduce such side effects. In this context, systematic studies on the IFNalpha/beta receptor and other systems have identified that the binding kinetics of the ligand-receptor interaction play an important role in defining signaling specificity. This has been explained by altered equilibrium and dynamics of the signaling complex in the plasma membrane.
In this work, I have investigated how the spatiotemporal organization and dynamics of signaling complexes regulate activation and signaling specificity of other members of the class II cytokine receptors. I focused on the type II IFN and IL-10 systems that supposedly form hexameric ligand-receptor signaling complexes in the plasma membrane. To this end, we developed an orthogonal multicolor anti-GFP nanobody-based labeling strategy, that allowed imaging of up to four different class II cytokine receptor subunits simultaneously. Using this labeling strategy, I investigated the spatiotemporal dynamics of IFNGR and IL-10R complex assembly by co-localization and co-tracking of single receptor subunits. Thereby, I did show that unliganded receptor subunits of IFNGR and IL-10R remain monomeric at the cell surface, whereas binding of the ligand led to fast and efficient receptor homo- and hetero-dimerization, verifying a ligand-induced receptor complex assembly model for both cytokine receptors. Moreover, I verified the hexameric ligand-receptor complex structure in cellulo. Analysis of single molecule trajectories and co-trajectories revealed a decrease in mobility and diffusion of IFNGR and IL-10R subunits upon ligand stimulation indicating receptor confinement and endocytosis. In this context, I identified an abnormal diffusion behavior of IL-10R2 that was dependent on the length of its transmembrane helix. We used partial agonists for both receptor complexes to systematically alter receptor binding stoichiometry and complex stability in the plasma membrane and correlated these with downstream signaling responses. Our analysis revealed a minor contribution of the second low affinity receptor subunit and its associated kinase to the overall signaling activity. However, the second high affinity binding subunit was indispensable to acquire full signaling potential. We managed to obtained decoupling of gene expression for both hexameric class II cytokine receptors by utilizing engineered ligands with altered receptor binding affinities. Our findings could pave the way for new biomedical approaches with engineered IFNgamma and IL-10 in the future. Furthermore, we uncovered pathogenic mechanisms behind the IFNGR2-T168N mutant and auto-IFNgamma antibodies, both of which prominently cause the Mendelian Susceptibility to Mycobacteria Disease (MSMD) syndrome, showing that both interfere with IFNGR activation by preventing recruitment of IFNGR2 into receptor complexes.
|
9 |
Evolution of the Growth Hormone Receptor: Insights Into the Molecular Basis of the Physiologically Pleiotropic Nature of the Growth Hormone ReceptorEllens, Elizabeth Rose January 2014 (has links)
One of the oldest, extant, lineages of vertebrates, the sea lamprey, was used to clarify the evolutionary origin and divergence of the growth hormone receptor (GHR) family. A single, full-length, cDNA, and a second, partial, cDNA were identified and shown to encode proteins that share amino acid identity with GHRs and prolactin receptors (PRLR s) previously identified. The complexity of the dynamic signaling system, with special emphasis on this system in fish and in the context of the evolution of this system, is discussed in the first chapter. The second chapter integrates the new insights gained by these studies. Included is a newly proposed phylogenetic analysis and revised nomenclature-system for vertebrate GHRs that better represents the evolutionary history of the receptor family. The molecular evolution of the receptors is, furthermore, highlighted as the backdrop for the continued discussion regarding how the GH-family of hormones exhibit such coordinated and pleiotropic actions.
|
10 |
Erk1/2 Signaling Pathway and Transcriptional Repressor Gfi1 in the Regulation of Neutrophil versus Monocyte Development in Response to G-CSF and M-CSFHu, Nan January 2015 (has links)
No description available.
|
Page generated in 0.0578 seconds