Spelling suggestions: "subject:"cytosensor"" "subject:"phytosensor""
1 |
CytoSensor : system integration and human interface designKiettrisalpipop, Voranon 28 March 2003 (has links)
CytoSensor system integration and design is driven by requirements generated by
the need to complete biological experiment operations. The system is used for toxin-based
detection which will identify and quantify unknown input toxins by using a biosensor
based on a living fish chromatophore. The system consists of 3 main parts: biosensor,
data acquisition and data interpretation.
This thesis is focused on data acquisition. Acquisition, in this case, is via a color
camera since the cells have an easily measurable visual output. The major initial task
is to select the hardware specifications that satisfy user requirements. Components are
obtained from different vendors. The understanding of each component is, therefore,
very important to maximize the system performance and compatibility.
The second major task is to design the software interface and components to
manage the data acquisition. This can be separated into 2 parts. The first part is
acquisition management and control. The second part is the human interface. This
thesis focuses on the human interface.
The human interface is the part that communicates between the user and the
system. The system will send the system status to the user. The user will then direct
the system through the operation. Operators may not be familiar with complicated
computerized systems. A user-friendly interface is important to reduce mistakes and
to facilitate the operation. The goal of this design is to direct the user from a single
look at the interface. The interface should therefore contain all the useful and necessary
information.
The design of the user interface begins with gathering the necessary information
and making a decision about which information is important to deliver to the user. A
clean, tidy and informative user interface will lead to efficient operation. The design
methodology is to group the same information within the same area and be consistent.
Machine operation is very important, as well. In order to reduce the confusion in
system operation, the machine operating protocol is designed to be very similar to the
traditional protocol.
Design of the machine operation is through interactions with the user. Sending
user information to the machine will be handled by the system management program.
By simulating the user scenario, each state change will lead to changing of the state of
the machine, as well. The scenario is implemented in a state-like diagram. This state
diagram must be implemented carefully in order to be able to handle all the cases and
exceptions.
The last and most important part is putting all the components together and
testing the system. All possible scenarios and features listed before designing will be
tested at this point. The last test is to run actual experiments with the system. After all
the tests are satisfied, the system is delivered to the user. At this time, the user might
give more feedback on the system.
In conclusion, the overall goal of designing this system is not only to make the system
for this specific application. However, the goal is to design a general application that
will be able to apply to different sensor application. By changing the core management
and hardware, the software can easily fit another sensor application. / Graduation date: 2003
|
2 |
CytoSensor : an application for distributed bio-sensor networksBoichon, Bertrand 28 March 2003 (has links)
The purpose of the thesis is to design and develop a network of automated, distributed,
living cell-based sensors, called CytoSensors. Their main role is to detect a
variety of biological and chemical toxins. The system is designed to help researchers
to carry out multitude of experiments, in order to build a practical knowledge base in
toxin detection. The network is developed in accordance with industry standards, to be
used and deployed for prevention in inhospitable environments such as battlefields, toxic
urban locations or polluted agricultural regions.
The sensor is composed of a processing unit (processor and memory), an archiving
unit (permanent data storage), a communication unit, input devices attached to a data
acquisition unit, and control devices. The CytoSensor is specifically designed to acquire
and analyze visual information about the living cells: hence cameras are used as input
devices and frame grabbers are used as the digitizers. The control devices are additional
external devices developed to help control and automate the process of data acquisition:
they comprise light intensity control USB boards to provide the correct amount of light
to view the cells, touch panels for user-instrument interaction, and bar code readers to
identify vials and experiments. The software, on the other hand, is a complex mosaic
of different elements, each of which has a specific task to accomplish. These building
blocks include the real-time acquisition, archiving, networking, processing, modelling,
sensor output presentation and user interfaces. Our goal is to develop, integrate and
optimize all these components to produce a viable and working device. The prototypes
evolved from an offline, portable sensor equipped with a single high-resolution CCD
camera and high-quality optics, to distributed online sensors with multiplexed CCD
cameras and affordable optics.
The acquisition board digitizes in real time the images from one to twelve multiplexed
high resolution cameras. Several operational requirements must be met. First,
a fault-tolerant and stable control over the input devices and control devices must be
provided. Secondly, acquisition timing errors should be minimized as a trade-off between
performance and the use of a low-cost, general-purpose, industry-standard operating system
such as Microsoft Windows NT. Finally, in order to reduce development time and
increase code reusability, a common abstraction layer is designed to provide for flexible
use with various types of digitizers and cameras.
As part of a distributed detection network, each sensor is able to exchange data
with other "trusted" sensors and users, and to allow remote control of certain tasks. The
sensor may be seen as a node capable of transmitting and receiving acquired or processed
data to a distant device (another sensor, a workstation or a PDA) for visualization, inspection
and decision-making by a front-end user. Each node on the network provides a
set of complementary services including data acquisition, data processing, communication
and system. The mandatory system service monitors the local system performance
and manages data archiving. The communication service connects the various services on
the network by enabling message-passing, file transfer and caching. The sensor network
integrates a lightweight, interoperable and flexible RPC (Remote Procedure Call) protocol
to achieve real-time control and monitoring of these distributed resources. A reliable
embedded database system is used to store metadata bound to acquired and processed
images. This database is also used to maintain information on neighbor nodes, and to
check access credentials of available local services. Finally, by adding store-and-forward
messaging capabilities, the application can be extended to work in wireless and mobile
networks. / Graduation date: 2003
|
3 |
Web-based distributed applications for cytosensorLiew, Ji Seok 17 March 2003 (has links)
To protect the environment and save human lives, the detection of various
hazardous toxins of biological or chemical origin has been a major challenge to the
researchers at Oregon State University. Living fish cells can indicate the presence of a
wide range of toxins by reactions such as changing color and shape changes. A
research team in Electrical and Computer Engineering Department is developing a
hybrid detection device (Cytosensor) that combines biological reaction and digital
technology. The functions of Cytosensor can be divided into three parts, which are
real-time image acquisition, data processing and statistical data analysis.
User-friendly Web-Based Distributed Applications (WBDA) for Cytosensor
offer various utilities. WBDA allow the users to control and observe the local
Cytosensor, search and retrieve data acquired by the sensor network, and process the
acquired images remotely using only a web browser. Additionally, these applications
minimize the user's exposure to dangerous chemicals or biological products.
This thesis describes the design of a remote controller, system observer, remote
processor, and search engine using JAVA applets, XML, Perl, MATLAB, and Peer-to-Peer models. Furthermore, the implementations of image segmentation technique in
MATLAB and the Machine Vision Algorithm in JAVA for independent web-based
processing are investigated. / Graduation date: 2003
|
4 |
Microphysiometry in the evaluation of cytotoxic drugs with special emphasis on the novel cyanoguanidine CHS 828Ekelund, Sara January 2001 (has links)
<p>This thesis describes the use of a new technology, the Cytosensor<sup>®</sup> microphysiometer, in the in vitro evaluation of cytotoxic drugs, using the lymphoma cell line U-937 GTB and primary cultures of tumour cells from patients as model systems. The method was specifically applied to study the metabolic effects of the novel cyanoguanidine N-(6-(4-chlorophenoxy)hexyl)-N’-cyano-N’’-4-pyridylguanidine, CHS 828, currently in phase I/II clinical trials. </p><p>The Cytosensor<sup>®</sup> measures metabolic effects as changes in the rate of extracellular acidification of cells exposed to a drug by perfusion. A number of standard cytotoxic drugs were found to produce typical and reproducible acidification response patterns during observation times up to 20 h. There seemed to be a relationship between a decrease in acidification and cytotoxicity, measured in the fluorometric microculture cytotoxicity assay (FMCA), after 20-24 h of continuous drug exposure.</p><p>In U-937 cells, CHS 828 induced a cytotoxic effect characterised by a steep concentration-response relationship followed by a plateau. After 24 h of incubation the DNA and protein synthesis were turned off. CHS 828 was found to produce a rapid and prolonged increase in extracellular acidification and lactate production similar to that of the structurally related mitochondrial inhibitor m-iodobenzylguanidine (MIBG). The CHS 828 induced acidification was observed in cell lines as well as in cells from various tumour types from patients and probably originates from increased glycolytic flux. The effects may be secondary to block of oxidative phosphorylation in the mitochondria, but the relevance of the early acidification is not clear. CHS 828 seemed to induce a late, at approximately 15 h, inhibition of the glycolysis followed by loss of ATP and subsequent cell death. After exposure to MIBG the loss of ATP and cell death occurred earlier and in parallel. The effects of CHS 828 were not found to resemble those of the structurally related polyamine biosynthesis inhibitor methylglyoxal-bis(guanyl-hydrazone) (MGBG). Thus, CHS 828 may represent a new and, thus, interesting mode of cytotoxic action worthwhile for further development.</p><p>In combinatory studies, a synergistic interaction was demonstrated between CHS 828 and the non-toxic drug amiloride. Additive-to-synergistic effects were also seen between CHS 828 and the bioreductive cytotoxic drug mitomycin C. In U-937 cells as well as in tumour cells from patients, CHS 828 demonstrated synergistic interactions in combination with melphalan and etoposide. </p><p>It is concluded that measurement in the Cytosensor<sup>®</sup> microphysiometer of early cellular metabolic changes is a feasible and potentially valuable complement to more conventional methods used in the evaluation of anticancer agents. </p>
|
5 |
Microphysiometry in the evaluation of cytotoxic drugs with special emphasis on the novel cyanoguanidine CHS 828Ekelund, Sara January 2001 (has links)
This thesis describes the use of a new technology, the Cytosensor® microphysiometer, in the in vitro evaluation of cytotoxic drugs, using the lymphoma cell line U-937 GTB and primary cultures of tumour cells from patients as model systems. The method was specifically applied to study the metabolic effects of the novel cyanoguanidine N-(6-(4-chlorophenoxy)hexyl)-N’-cyano-N’’-4-pyridylguanidine, CHS 828, currently in phase I/II clinical trials. The Cytosensor® measures metabolic effects as changes in the rate of extracellular acidification of cells exposed to a drug by perfusion. A number of standard cytotoxic drugs were found to produce typical and reproducible acidification response patterns during observation times up to 20 h. There seemed to be a relationship between a decrease in acidification and cytotoxicity, measured in the fluorometric microculture cytotoxicity assay (FMCA), after 20-24 h of continuous drug exposure. In U-937 cells, CHS 828 induced a cytotoxic effect characterised by a steep concentration-response relationship followed by a plateau. After 24 h of incubation the DNA and protein synthesis were turned off. CHS 828 was found to produce a rapid and prolonged increase in extracellular acidification and lactate production similar to that of the structurally related mitochondrial inhibitor m-iodobenzylguanidine (MIBG). The CHS 828 induced acidification was observed in cell lines as well as in cells from various tumour types from patients and probably originates from increased glycolytic flux. The effects may be secondary to block of oxidative phosphorylation in the mitochondria, but the relevance of the early acidification is not clear. CHS 828 seemed to induce a late, at approximately 15 h, inhibition of the glycolysis followed by loss of ATP and subsequent cell death. After exposure to MIBG the loss of ATP and cell death occurred earlier and in parallel. The effects of CHS 828 were not found to resemble those of the structurally related polyamine biosynthesis inhibitor methylglyoxal-bis(guanyl-hydrazone) (MGBG). Thus, CHS 828 may represent a new and, thus, interesting mode of cytotoxic action worthwhile for further development. In combinatory studies, a synergistic interaction was demonstrated between CHS 828 and the non-toxic drug amiloride. Additive-to-synergistic effects were also seen between CHS 828 and the bioreductive cytotoxic drug mitomycin C. In U-937 cells as well as in tumour cells from patients, CHS 828 demonstrated synergistic interactions in combination with melphalan and etoposide. It is concluded that measurement in the Cytosensor® microphysiometer of early cellular metabolic changes is a feasible and potentially valuable complement to more conventional methods used in the evaluation of anticancer agents.
|
Page generated in 0.0631 seconds