Spelling suggestions: "subject:"décomposition LU"" "subject:"décompositions LU""
1 |
Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques / Algorithms for non-unitary joint diagonalization of tensors. Application to MIMO source separation in digital telecommunicationsMaurandi, Victor 30 November 2015 (has links)
Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques. / This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals.
|
Page generated in 0.0548 seconds