• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Représentations redondantes pour les signaux d’électroencéphalographie / Redundant representations for electroencephalography signals

Isaac, Yoann 29 May 2015 (has links)
L’électroencéphalographie permet de mesurer l’activité du cerveau à partir des variations du champ électrique à la surface du crâne. Cette mesure est utilisée pour le diagnostic médical, la compréhension du fonctionnement du cerveau ou dans les systèmes d’interface cerveau-machine. De nombreux travaux se sont attachés au développement de méthodes d’analyse de ces signaux en vue d’en extraire différentes composantes d’intérêt, néanmoins leur traitement pose encore de nombreux problèmes. Cette thèse s’intéresse à la mise en place de méthodes permettant l’obtention de représentations redondantes pour ces signaux. Ces représentations se sont avérées particulièrement efficaces ces dernières années pour la description de nombreuses classes de signaux grâce à leur grande flexibilité. L’obtention de telles représentations pour les mesures EEG présente certaines difficultés du fait d’un faible rapport signal à bruit des composantes recherchées. Nous proposons dans cette thèse de les surmonter en guidant les méthodes considérées vers des représentations physiologiquement plausibles des signaux EEG à l’aide de régularisations. Ces dernières sont construites à partir de connaissances a priori sur les propriétés spatiales et temporelles de ces signaux. Pour chacune d’entre elles, des algorithmes sont proposés afin de résoudre les problèmes d’optimisation associés à l’obtention de ces représentations. L’évaluation des approches proposées sur des signaux EEG souligne l’efficacité des régularisations proposées et l’intérêt des représentations obtenues. / The electroencephalography measures the brain activity by recording variations of the electric field on the surface of the skull. This measurement is usefull in various applications like medical diagnosis, analysis of brain functionning or whithin brain-computer interfaces. Numerous studies have tried to develop methods for analyzing these signals in order to extract various components of interest, however, none of them allows to extract them with sufficient reliabilty. This thesis focuses on the development of approaches considering redundant (overcomoplete) representations for these signals. During the last years, these representations have been shown particularly efficient to describe various classes of signals due to their flexibility. Obtaining such representations for EEG presents some difficuties due to the low signal-to-noise ratio of these signals. We propose in this study to overcome them by guiding the methods considered to physiologically plausible representations thanks to well-suited regularizations. These regularizations are built from prior knowledge about the spatial and temporal properties of these signals. For each regularization, an algorithm is proposed to solve the optimization problem allowing to obtain the targeted representations. The evaluation of the proposed EEG signals approaches highlights their effectiveness in representing them.
2

Apprentissage de dictionnaires structurés pour la modélisation parcimonieuse des signaux multicanaux

Lesage, Sylvain 03 April 2007 (has links) (PDF)
Les décompositions parcimonieuses décrivent un signal comme une combinaison d'un petit nombre de formes de base, appelées atomes. Le dictionnaire d'atomes, crucial pour l'efficacité de la décomposition, peut résulter d'un choix a priori (ondelettes, Gabor, ...) qui fixe la structure du dictionnaire, ou d'un apprentissage à partir d'exemples représentatifs du signal. Nous proposons ici un cadre hybride combinant des contraites structurelles et une approche par apprentissage. Les dictionnaires ainsi structurés apportent une meilleure adaptation aux propriétés du signal et permettent de traiter des volumes importants de données. Nous exposons les concepts et les outils qui étayent cette approche, notamment l'adaptation des algorithmes Matching Pursuit et K-SVD à des dictionnaires d'atomes constitués de motifs linéairement déformables, via une propriété d'adjonction. Nous présentons également des résultats de séparation de signaux monocanaux dans le cadre proposé.

Page generated in 0.076 seconds