Spelling suggestions: "subject:"découverte interactive dde connaissances"" "subject:"découverte interactive dee connaissances""
1 |
Catégorisation des comportements de conduite en termes de consommation en carburant : une méthode de découverte de connaissances contextuelles à partir des traces d’interactions / Categorization of driving behavior in terms of fuel consumptionTraoré, Assitan 19 January 2017 (has links)
Cette thèse propose une méthode d'ingénierie des connaissances contextuelles qui permet la modélisation et l'identification du contexte explicatif d'un critère observé. Le contexte est constitué de connaissances explicatives situées permettant une représentation élicitée valide d'un objet dans la situation visée. Ces connaissances sont généralement découvertes lors de l'observation de la réalisation de l'activité dans laquelle cet objet est impliqué. Elles sont donc difficiles à décrire en début d'analyse d'une activité. Toutefois, elles restent nécessaires pour la définition, l'explication et la compréhension efficace d'une activité selon un critère observé caractérisant cette dernière. Cette thèse propose la définition progressive du contexte satisfaisant pour expliquer un critère observé lors de l'observation d'une activité. Cette recherche mobilise les traces d'interaction de l'activité analysée, précise la notion de contexte et exploite les méthodes de fouille de données pour réaliser la catégorisation et la classification d'un critère observé en distinguant les paramètres contextuels et non contextuels. L'environnement développé sur les principes des traces d'interaction, permet d'assister la découverte du contexte explicatif par une approche interactive, à l'aide des connaissances de l'analyste, de distinguer ce qui est contexte de ce qui ne l'est pas. Nous montrons qu'il est possible de construire un contexte valide, en le « découvrant » et en le formulant sous une forme générique, telle que proposée dans la littérature. Une application de la méthode a été effectuée en situation de conduite automobile pour modéliser et identifier le contexte explicatif de la consommation en carburant. En s'appuyant sur les connaissances existantes du domaine, la validation de la méthode est effectuée en étudiant qualitativement les connaissances produites sur la consommation réelle en carburant. La méthode est validée quantitativement en appliquant les règles de classifications établies sur des données collectées de l'activité de conduite. Cette illustration de l'analyse de l'activité de conduite automobile avec la méthode de découverte de connaissances contextuelles, pour déterminer le contexte explicatif de la consommation en carburant, a été effectuée à l'Ifsttar sur des données réelles collectées lors de l'activité de conduite en situation naturelle. Les expérimentations menées montrent des résultats encourageants et permettent d'envisager l'intégration de la méthode de découverte de connaissances contextuelles dans les pratiques des analystes de l'Ifsttar / This thesis proposes an engineering method of contextual knowledge that allows identification and modelling of explanatory context of observed criteria. The context consists of located explanatory knowledge allowing valid representation of an object in the covered situation. This knowledge is generally elicited when observing the activity performance in which the object is involved. They are therefore difficult to describe in the beginning of activity analysis but are necessary for the definition, explanation and effective understanding of an activity according to an observed criterion characterizing this activity. This thesis proposes a progressive definition of adequate context to explain an observed criterion during activity observation. The research mobilizes interaction traces of the analysed activity, clarify context notion and uses data mining methods for classification or categorization of an observed criterion by distinguishing contextual parameters and no contextual parameters. The developed environment, based on interaction traces principles, allows to assist explanatory context discovery by interactive approach, using context analyst knowledge. We demonstrate that it’s possible to build a valid context, by discovering it and by formulating it in a generic form as proposed in literature. An application of the method was performed in driving situation to identify and model the explanatory context of fuel consumption. The method validation is performed by studying produced knowledge on fuel consumption, qualitatively by relying on existing domain knowledge and quantitatively by applying classification rules established trough data collected from driving activity. This illustration of driving activity analysis with the contextual knowledge discovery method to determine explanatory context of fuel consumption was conducted at Ifsttar on real data, collected during driving activity in natural driving situation. The led experiments show encouraging results and allows considering the integration of contextual knowledge discovery method in Ifsttar analyst practices
|
2 |
Découverte interactive de connaissances à partir de traces d'activité : Synthèse d'automates pour l'analyse et la modélisation de l'activité de conduite automobileMathern, Benoît 12 March 2012 (has links) (PDF)
Comprendre la genèse d'une situation de conduite requiert d'analyser les choixfaits par le conducteur au volant de son véhicule pendant l'activité de conduite, dans sacomplexité naturelle et dans sa dynamique située. Le LESCOT a développé le modèleCOSMODRIVE, fournissant un cadre conceptuel pour la simulation cognitive de l'activitéde conduite automobile. Pour exploiter ce modèle en simulation, il est nécessairede produire les connaissances liées à la situation de conduite sous forme d'un automatepar exemple. La conception d'un tel automate nécessite d'une part de disposer de donnéesissues de la conduite réelle, enregistrées sur un véhicule instrumenté et d'autrepart d'une expertise humaine pour les interpréter.Pour accompagner ce processus d'ingénierie des connaissances issues de l'analysed'activité, ce travail de thèse propose une méthode de découverte interactive deconnaissances à partir de traces d'activité. Les données de conduite automobile sontconsidérées comme des M-Traces, associant une sémantique explicite aux données,exploitées en tant que connaissances dans un Système à Base de Traces (SBT). Le SBTpermet de filtrer, transformer, reformuler et abstraire les séquences qui serviront à alimenterla synthèse de modèles automates de l'activité de conduite. Nous reprenons destechniques de fouille de workflow permettant de construire des automates (réseaux dePetri) à partir de logs. Ces techniques nécessitent des données complètes ou statistiquementreprésentatives. Or les données collectées à bord d'un véhicule en situationde conduite sont par nature des cas uniques, puisqu'aucune situation ne sera jamaisreproductible à l'identique, certaines situations particulièrement intéressantes pouvanten outre être très rarement observées. La gageure est alors de procéder à une forme degénéralisation sous la forme de modèle, à partir d'un nombre de cas limités, mais jugéspertinents, représentatifs, ou particulièrement révélateurs par des experts du domaine.Pour compléter la modélisation de telles situations, nous proposons donc de rendreinteractifs les algorithmes de synthèse de réseau de Petri à partir de traces, afin depermettre à des experts-analystes de guider ces algorithmes et de favoriser ainsi la découvertede connaissances pertinentes pour leur domaine d'expertise. Nous montreronscomment rendre interactifs l'algorithme α et l'algorithme α+ et comment généralisercette approche à d'autres algorithmes.Nous montrons comment l'utilisation d'un SBT et de la découverte interactived'automates impacte le cycle général de découverte de connaissances. Une méthodologieest proposée pour construire des modèles automates de l'activité de conduiteautomobile.Une étude de cas illustre la méthodologie en partant de données réelles de conduiteet en allant jusqu'à la construction de modèles avec un prototype logiciel développédans le cadre de cette thèse
|
3 |
Découverte interactive de connaissances à partir de traces d’activité : Synthèse d’automates pour l’analyse et la modélisation de l’activité de conduite automobile / Interactive discovery of knowledge from activity traces : A synthesis of automata in the analysis and modelling of the activity of car drivingMathern, Benoît 12 March 2012 (has links)
Comprendre la genèse d’une situation de conduite requiert d’analyser les choixfaits par le conducteur au volant de son véhicule pendant l’activité de conduite, dans sacomplexité naturelle et dans sa dynamique située. Le LESCOT a développé le modèleCOSMODRIVE, fournissant un cadre conceptuel pour la simulation cognitive de l’activitéde conduite automobile. Pour exploiter ce modèle en simulation, il est nécessairede produire les connaissances liées à la situation de conduite sous forme d’un automatepar exemple. La conception d’un tel automate nécessite d’une part de disposer de donnéesissues de la conduite réelle, enregistrées sur un véhicule instrumenté et d’autrepart d’une expertise humaine pour les interpréter.Pour accompagner ce processus d’ingénierie des connaissances issues de l’analysed’activité, ce travail de thèse propose une méthode de découverte interactive deconnaissances à partir de traces d’activité. Les données de conduite automobile sontconsidérées comme des M-Traces, associant une sémantique explicite aux données,exploitées en tant que connaissances dans un Système à Base de Traces (SBT). Le SBTpermet de filtrer, transformer, reformuler et abstraire les séquences qui serviront à alimenterla synthèse de modèles automates de l’activité de conduite. Nous reprenons destechniques de fouille de workflow permettant de construire des automates (réseaux dePetri) à partir de logs. Ces techniques nécessitent des données complètes ou statistiquementreprésentatives. Or les données collectées à bord d’un véhicule en situationde conduite sont par nature des cas uniques, puisqu’aucune situation ne sera jamaisreproductible à l’identique, certaines situations particulièrement intéressantes pouvanten outre être très rarement observées. La gageure est alors de procéder à une forme degénéralisation sous la forme de modèle, à partir d’un nombre de cas limités, mais jugéspertinents, représentatifs, ou particulièrement révélateurs par des experts du domaine.Pour compléter la modélisation de telles situations, nous proposons donc de rendreinteractifs les algorithmes de synthèse de réseau de Petri à partir de traces, afin depermettre à des experts-analystes de guider ces algorithmes et de favoriser ainsi la découvertede connaissances pertinentes pour leur domaine d’expertise. Nous montreronscomment rendre interactifs l’algorithme α et l’algorithme α+ et comment généralisercette approche à d’autres algorithmes.Nous montrons comment l’utilisation d’un SBT et de la découverte interactived’automates impacte le cycle général de découverte de connaissances. Une méthodologieest proposée pour construire des modèles automates de l’activité de conduiteautomobile.Une étude de cas illustre la méthodologie en partant de données réelles de conduiteet en allant jusqu’à la construction de modèles avec un prototype logiciel développédans le cadre de cette thèse / Driving is a dynamic and complex activity. Understanding the origin of a driving situationrequires the analysis of the driver’s choices made while he/she drives. In addition,a driving situation has to be studied in its natural complexity and evolution. LESCOThas developed a model called COSMODRIVE, which provides a conceptual frameworkfor the cognitive simulation of the activity of car driving. In order to run themodel for a simulation, it is necessary to gather knowledge related to the driving situation,for example in the form of an automaton. The conception of such an automatonrequires : 1) the use of real data recorded in an instrumented car, and, 2) the use of humanexpertise to interpret these data. These data are considered in this thesis as activitytraces.The purpose of this thesis is to assist the Knowledge Engineering process of activityanalysis. The present thesis proposes a method to interactively discover knowledgefrom activity traces. For this purpose, data from car driving are considered as M-traces– which associate an explicit semantic to these data. This semantic is then used asknowledge in a Trace Based System. In a Trace Based System, M-traces can be filtered,transformed, reformulated, and abstracted. The resulting traces are then used as inputsin the production of an automaton model of the activity of driving. In this thesis,Workflow Mining techniques have been used to build automata (Petri nets) from logs.These techniques require complete or statistically representative data sets. However,data collected from instrumented vehicles are intrinsically unique, as no two drivingsituations will ever be identical. In addition, situations of particular interest, such ascritical situations, are rarely observed in instrumented vehicle studies. The challenge isthen to produce a model which is a form of generalisation from a limited set of cases,which have been judged by domain experts as being relevant and representative of whatactually happens.In the current thesis, algorithms synthesising Petri nets from traces have been madeinteractive, in order to achieve the modelling of such driving situations. This thenmakes it possible for experts to guide the algorithms and therefore to support the discoveryof knowledge relevant to the experts. The process involved in making the α-algorithm and the α+-algorithm interactive is discussed in the thesis in a way that canbe generalised to other algorithms.In addition, the current thesis illustrates how the use of a Trace Based System andthe interactive discovery of automata impacts the global cycle of Knowledge Discovery.A methodology is also proposed to build automaton models of the activity of cardriving. Finally, a case study is presented to illustrate how the proposed methodologycan be applied to real driving data in order to construct models with the softwaredeveloped in this thesis
|
Page generated in 0.1575 seconds