Spelling suggestions: "subject:"défaut d'empilhamento"" "subject:"défaut d'empiriquement""
1 |
Luminescence at Defects in h-BN : Excitons at Stacking Faults and Single Photon Emitters / Luminescence des défauts du h-BN : excitons liés à des défauts d'empilement et émetteurs de photon uniqueBourrellier, Romain 28 October 2014 (has links)
Dans les dernières années nombre de matériaux lamellaires à dimensions réduites ont démontré des propriétés optiques remarquables. Cependant, la plupart des études ont porté sur le système parfait et le rôle des défauts en tant que centres optiques actifs restent encore largement inexploré. Le nitrure de bore hexagonal (h-BN) est l'un des candidats les plus prometteurs pour les dispositifs émetteurs de lumière dans la région de l’UV lointain, présentant une forte émission excitonique à 5,8 eV. Cependant, émission n’apparaît uniquement que dans des monocristaux très purs qui peuvent difficilement être obtenus que par des procédés de synthèse complexes. Les échantillons ordinaires de h-BN présentent des spectres d'émission plus complexes qui ont été généralement été attribuée à la présence de défauts structuraux. Malgré un grand nombre d'études expérimentales jusqu'à présent il n'a pas été possible d'attribuer cette émission additionnelle à des défauts structuraux bien définis. Nous abordons ici cette question fondamentale en adoptant une approche théorique et expérimentale combinant une technique de cathodoluminescence nanométriquement résolu avec une caractérisation structural résolu atomiquement par microscopie électronique a transmission et de l'état de l'art de simulations excitoniques. Très récemment, l'équipe d'Orsay a mis au point un système de détection de cathodoluminescence intégré au sein d'un microscope électronique à transmission à balayage. Cette expérience unique est maintenant en mesure de fournir des spectres d'émission complet avec une résolution aussi faible que quelques dizaines de MeV associés à une taille de sonde électronique du nanomètre. Une image hyper-spectrale cathodoluminescence peut donc être enregistrée en parallèle avec une image HAADF. La cathodoluminescence résolu au nanomètre sur quelques-couche chimiquement exfoliée de h-BN a montré que les spectres d'émission sont fortement inhomogènes dans les feuillets individuels. Les pics d'émission à proximité de l'exciton libre apparaissent dans des régions étendues. Les examens complémentaires par microscopie électronique à transmission à haute résolution permettent d'associer ces raies d'émission avec des défauts étendue dans le cristal tels que les défauts d'empilement et les plis des facetter. Au moyen de calculs ab-initio dans le cadre de la « Many Body perturbation theory » (GW) et l'équation de Bethe-Salpeter nous fournissons une description détaillée de la structure électronique et la réponse spectroscopique du nitrure de bore hexagonal en présence de défaut d’empilements. En particulier, nous montrons un bon accord avec les résultats expérimentaux, les excitons supplémentaires sont associées à des changements de symétrie locaux qui se produisent par des fautes d'empilement dans le cristal. Ce résultat sera ensuite étendu à des nanotubes de BN à parois multiples. Des émissions supplémentaires qui apparaissent à l'intérieur du gap présentent une localisation spatiale élevée, typiquement inférieure à 100 nm, et par conséquent ils peuvent être liés à des défauts ponctuels individuels. Lorsqu’ils sont adressés individuellement à travers une sonde électronique très ciblé, ils pourraient avoir un caractère d’émetteur de photon unique. Cette hypothèse a été récemment confirmée par des expériences combinant notre système de cathodoluminescence avec un interféromètre Handburry-Brown et Twiss (HBT). / Within the latest years number of layered materials at reduced dimensions have demonstrated remarkable optical properties. However most studies focused on perfect system and the role of defects as optical active centers remain still largely unexplored. Hexagonal boron nitride (h-BN) is one of the most promising candidates for light emitting devices in the far UV region, presenting a single strong excitonic emission at 5.8 eV. However, a single line appears only in extremely pure mono-crystals that can hardly be obtained only though complex synthesis processes. Common h-BN samples present more complex emission spectra that have been generally attributed to the presence of structural defects. Despite a large number of experimental studies up to now it was not possible to attribute specific emission features to well identify defective structures. Here we address this fundamental question by adopting a theoretical and experimental approach combining few nanometer resolved cathodoluminescence techniques with high resolution transmission electron microscopy images and state of the art quantum mechanical simulations. Very recently, the Orsay team has developed a cathodoluminescence detection system integrated within a scanning transmission electron microscope. This unique experimental set up is now able to provide full emission spectra with a resolution as low as few tens of meV associated with an electron probe size of one nanometer. A cathodoluminescence hyper-spectral image can thus be recorded in parallel with an HAADF image. Nanometric resolved cathodoluminescence on few-layer chemically exfoliated h-BN crystals have shown that emission spectra are strongly inhomogeneous within individual flakes. Emission peaks close to the free exciton appear in extended regions. Complementary investigations through high resolution transmission electron microscopy allow to associate these emission lines with extended crystal deformation such as stacking faults and folds of the planes. By means of ab-initio calculations in the framework of Many Body Perturbation Theory (GW) approximation and Bethe-Salpeter equation) we provide an in-depth description of the electronic structure and spectroscopic response of bulk hexagonal boron nitride in the presence of extended morphological modifications. In particular we show that, in a good agreement with the experimental results, additional excitons are associated to local symmetry changes occurring at crystal stacking faults. These result will then be extended to faceted multiwalled BN nanotubes, they display additional emission at the same energy as characterized within the flakes.
|
Page generated in 0.0917 seconds