• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une résolution projective pour le second groupe de Morava pour p>=5 et applications / A projective resolution of the second Morava group for p >3 and applications

Lader, Olivier 31 October 2013 (has links)
Dans les années 80, Shimomura a déterminé les groupes d'homotopie du spectre de Moore V(0) localisé par rapport à K(2) la deuxième K-théorie de Morava. Plus tard, avec les travaux de Devinatz et Hopkins est apparu une autre suite spectrale convergeant vers les précédents groupes d'homotopies. Lorsque le paramètre premier p de la théorie K(2) est supérieur ou égal à cinq, la précédente suite spectrale dégénère. Ainsi, déterminer ces groupes d'homotopie revient à calculer les groupes de cohomologie du groupe stabilisateur de Morava à coefficients dans l'anneau de Lubin-Tate modulo p. En 2007, Henn a démontré l'existence, lorsque p > 3, d'une résolution projective du groupe de Morava de longueur quatre. Dans cette thèse, nous précisons une telle résolution projective. On l'applique ensuite au calcul effectif des groupes de cohomologie à coefficients dans l'anneau de Lubin-Tate modulo p. Enfin, on donne une seconde application, en redémontrant un résultat de Hopkins non publié sur le groupe de Picard de la catégorie des spectres K(2)-locaux. / In the 80's, Shimomura has computed the homotopy groups of the Moore spectrum V(0) localized with respect to Morava K-theory K(2). Some years later, Devinatz and Hopkins found an other spectral sequence converging to those homotopy groups. When the prime paramater p of K(2) is greather or equal to five, the preceding spectral collapses. Thus, computing those homotopy groups consists in computing the cohomology groups of Morava Stabilizer Group with coefficients in the Lubin-Tate ring mod p. In 2007, Henn has showed that there exists, when p >3, a projective resolution of the Morava stabilizer group of length four. In this thesis, we give a more precise description of this resolution. Then, we use it for the computation of the cohomology groups of Morava Stabilizer Group with coefficients in the Lubin-Tate ring mod p. As a second application, we give an other proof of the unpublished result of Hopkins on the Picard group of the K(2)-local spectrum category.

Page generated in 0.1765 seconds