• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Délivrance moléculaire par contrôle de la dynamique de gels supports : étude en vue de l'élaboration d'un nouveau type de pansement / From drug delivery through control of gel dynamics to the elaboration of a new type of wound dressing

Klak, Marie-Cécile 05 May 2011 (has links)
Les gels sont des solides mous constitués d'un réseau de molécules emprisonnant une phase liquide. Certains gels constitués de polymères biologiques sont appelés biogels. Biocompatibles, biorésorbables et déformables, ils possèdent une structure similaire à la matrice extracellulaire. De plus, la phase aqueuse d'un gel représente 95% de sa masse. Il est donc possible d'inclure des molécules au sein du réseau gélifié et de les faire diffuser vers l'extérieur. Ces qualités confèrent aux biogels de grandes potentialités en tant que biomatériaux innovants et systèmes de délivrance thérapeutique.Durant cette thèse, nous avons étudié la diffusion des molécules à partir de différents gels de gélatine.Dans un premier temps la diffusion à partir d'un gel chimique à été caractérisée grâce à l'utilisation de différentes molécules modèles. Elles balaient une large gamme de poids moléculaire et de charge ionique. Il a été montré que la diffusion depuis ces gels dépend de la nature du réseau de gélatine et de la nature des molécules diffusantes.Dans un second temps, les gels chimiques de gélatine ont été modifiés afin de contrôler et stimuler la libération moléculaire. Cinq nouvelles matrices gélifiées ont donc été synthétisées puis testés en diffusion. La phase sol du gel a tout d'abord été modifiée à l'aide d'un polymère viscosigène : l'alginate. Celui-ci limite la diffusion de certaines molécules. De plus son hydrolyse progressive induit la libération graduelle de molécules piégées. Le réseau de gélatine a ensuite été modifié. La synthèse d'un deuxième réseau au sein du gel de gélatine augmente ses capacités de rétention. Enfin l'utilisation de la technologie enzgel permettant la resolubilisation enzymatique contrôlée et programmée du gel de gélatine permet la libération massive et totale des molécules.Dans un troisième temps, l'ensemble des résultats de diffusion a permis la mise au point d'un unique modèle mathématique de diffusion pour l'ensemble des matrices. Ce modèle repose sur la deuxième loi de Fick et prend en compte l'encombrement stérique au sein du réseau de gélatine. Ainsi, il est possible de prévoir la diffusion en fonction de la nature du réseau et de la molécule diffusante.Enfin les résultats ont été utilisés dans le but de développer un pansement actif permettant de stimuler la cicatrisation des plaies chroniques. / Gels are soft matter composed of a liquid phase entrapped in a polymer network. Biopolymers can form gels, and then called biogels. Biocompatible, bioresorbable, these structures are really closed to extracellular matrix. Furthermore, aqueous phase represents 95% of the whole gel. Its possible to include molecules inside this liquid phase. Molecules are then released from the gel to the external environment.During this PhD project, we have studied the molecular release from different gelatin matrices.First, the release of a large range of molecules from chemical gelatin gel was studied. Different molecular weights and ionic charges were compared. The results show that the release depend on both the network structure and the include molecule characteristics. Moreover, the simultaneous release of two different compounds is possible.In the second part of the manuscript, gelatin gel was modified in order to control or stimulate the release. Five matrices were synthesised and tested. At first, alginate, a viscous polymer was introduced into the aqueous phase. Alginate is able to limit diffusion and its hydrolysis stimulates molecular release. Then, the gelatin network itself was modified. The synthesis of a second network within gelatin gel increases the entrapment of molecules. On the contrary, the use of ephemeral gels, where gelatin network hydrolysis is programmed and timed-controlled, leads to stimulate the molecular release.Then, a simple model elaborated from Fick's second law was constructed to describe these different delivery systems. The originality of the model resides in the consideration of the steric hindrance inside the gel. This unique model is able to predict correctly the release kinetics of small and large molecules, with or without interaction with the solid network, the concomitant release of two molecules and the release from ephemeral gels.Finally, all results were used in order to develop a new wound dressing able to deliver drugs and stimulate chronics wound healing.
2

Conception et élaboration de biogels pour la délivrance d'agents anti-biofilms : étude en vue de l'élaboration d'un nouveau pansement / Conception and elaboration of biogel for anti-biofilm delivery : a study to develop a new wound dressing.

Lefebvre, Elodie 17 October 2014 (has links)
Depuis une dizaine d'année, le rôle des biofilms dans la résistance aux antibiotiques et à la réponse immunitaire a été mis en évidence dans les infections chroniques. Les plaies chroniques possèdent ces mêmes particularités de résistance aux divers traitements. La formation de biofilm dans les plaies induit une protection des bactéries qui participe potentiellement à la chronicité et est responsable de l'inefficacité des soins. Le but de ma thèse est de concevoir un biogel actif contre les biofilms pouvant être présents dans les plaies chroniques.Nous avons développé un gel de gélatine innovant contenant divers agents anti-biofilms et permettant l'éradication des bactéries pathogènes. Ces gels sont des solides mous composés d'une phase liquide emprisonnée dans un réseau de biopolymères. Biocompatibles et biorésorbables, ils présentent des avantages pour une utilisation en tant que biomatériaux pour la santé. Il est possible d'y inclure des molécules qui vont ensuite diffuser vers le milieu extérieur. Pour mieux appréhender cette cinétique de diffusion, nous avons étudié le relargage de molécules modèles de différents poids moléculaires et de différentes charges.La stratégie anti-biofilm adoptée consiste à prévenir la colonisation bactérienne, déstabiliser le biofilm et éradiquer les bactéries pathogènes de la plaie (Diminution de la biomasse d'au moins 5 logarithmes). Pour développer ce système, 3 types de molécules ont été combinées : un antiseptique commercial, utilisé dans le cadre des soins des plaies chroniques, un chélateur d'ions actifs contre les MMPs surexprimées dans les plaies et une protéase capable de dégrader la matrice du biofilm. Cette étude a été réalisée sur des biofilms mono-espèce de P. aeruginosa et S. aureus, bactéries pathogènes fréquemment retrouvées dans les plaies chroniques. La combinaison des principes actifs a été testée en solution, en contact direct avec le biofilm. Puis, les agents ont été encapsulés dans un biogel. Nous avons étudié à la fois les propriétés viscoélastiques de ces gels mais aussi leur efficacité contre un biofilm, comparé au traitement non encapsulé. Lors de ce travail, nous avons élaboré un gel manipulable capable d'éradiquer un biofilm mono espèce ou multi espèces, constitué de souches de laboratoire ou de souches cliniques issues de plaie chronique. / Over the past 10 years, researchers have highlighted the role of biofilms on resistance to immune response and antibiotics treatments of chronic infections.Chronic wounds share these characteristics as they are resistant to care treatments. The possible biofilm formation in wound can protect bacteria participating to the chronicity and the resistance to wound care treatment. The aim of this thesis is to conceive a biogel against biofilms in chronic wounds.We have developed an innovative gelatin gel containing various anti-biofilm agents able to eradicate pathogenic bacteria biofilm. This gel is soft matter composed of a liquid phase entrapped in a biopolymer network. It is biocompatible and bioresorbable; these properties are necessary for a biomaterial. The gel has the capacity to deliver molecules with controlled release. We have studied the release of model molecules with different charges and weights.The anti-biofilm strategy consisted in preventing bacterial colonization, disrupting the biofilm and eradicating pathogen bacteria in wound (a decrease biomass of at least 5 log reductions). The system developed consisted in the combination of three different types of molecules: a commercial antiseptic usually applied in chronic wound care, an ion chelator active against MMPs which are over-expressed in chronic wounds and a protease which can disrupt the matrix of the biofilm.The study has been carried out on mono-species biofilms synthesized in vitro, with P. aeruginosa and S. aureus, two pathogenic bacteria frequently encountered in chronic wounds. The combination of the active agents was tested in solution or in directly contact with the biofilm. Then molecules were entrapped in the biogel. The viscoelastic properties of the gel were studied and the efficacy of the entrapped treatment compared to that of the solution. A handeable and efficient biomaterial has been elaborated during this study. It is able to eradicate mono – and multi- species biofilms from both laboratory and clinical bacterial strains.

Page generated in 0.063 seconds