Spelling suggestions: "subject:"démélange nonlinéaire"" "subject:"démélange nonlinéaires""
1 |
Méthodes de démélange non-linéaires pour l'imagerie hyperspectraleNguyen Hoang, Nguyen 03 December 2013 (has links) (PDF)
Dans cette thèse, nous avons présenté les aspects de la technologie d'imagerie hyperspectrale en concentrant sur le problème de démélange non-linéaire. Pour cette tâche, nous avons proposé trois solutions. La première consiste à intégrer les avantages de l'apprentissage de variétés dans les méthodes de démélange classique pour concevoir leurs versions non-linéaires. Les résultats avec les données générées sur une variété bien connue - le "Swissroll"- donne des résultats prometteurs. Les méthodes fonctionnent beaucoup mieux avec l'augmentation de la non-linéarité. Cependant, l'absence de contrainte de non-négativité dans ces méthodes reste une question ouverte pour des améliorations à trouver. La deuxième proposition vise à utiliser la méthode de pré-image pour estimer une transformation inverse de l'espace de données entrées des pixels vers l'espace des abondances. L'ajout des informations spatiales sous forme "variation totale" est également introduit pour rendre l'algorithme plus robuste au bruit. Néanmoins, le problème d'obtention des données de réalité terrain nécessaires pour l'étape d'apprentissage limite l'application de ce type d'algorithmes.
|
2 |
Méthodes de démélange non-linéaires pour l'imagerie hyperspectrale / Non-linear unmixing methods for hyperspectral imagingNguyen Hoang, Nguyen 03 December 2013 (has links)
Dans cette thèse, nous avons présenté les aspects de la technologie d'imagerie hyperspectrale en concentrant sur le problème de démélange non-linéaire. Pour cette tâche, nous avons proposé trois solutions. La première consiste à intégrer les avantages de l'apprentissage de variétés dans les méthodes de démélange classique pour concevoir leurs versions non-linéaires. Les résultats avec les données générées sur une variété bien connue - le "Swissroll"- donne des résultats prometteurs. Les méthodes fonctionnent beaucoup mieux avec l'augmentation de la non-linéarité. Cependant, l'absence de contrainte de non-négativité dans ces méthodes reste une question ouverte pour des améliorations à trouver. La deuxième proposition vise à utiliser la méthode de pré-image pour estimer une transformation inverse de l'espace de données entrées des pixels vers l'espace des abondances. L'ajout des informations spatiales sous forme "variation totale" est également introduit pour rendre l'algorithme plus robuste au bruit. Néanmoins, le problème d'obtention des données de réalité terrain nécessaires pour l'étape d'apprentissage limite l'application de ce type d'algorithmes. / In this thesis , we present several aspects of hyperspectral imaging technology , while focusing on the problem of non- linear unmixing . We have proposed three solutions for this task. The first one is integrating the advantages of manifold learning in classical unmixing methods to design their nonlinear versions . Results with data generated on a well-known manifold- the " Swissroll " - seem promising. The methods work much better with the increase in non- linearity compared with their linear version. However, the absence of constraint of non- negativity in these methods remains an open question for improvements . The second proposal is using the pre-image method for estimating an inverse transformation of the data form pixel space to abundance of space . The adoption of spatial information as " total variation " is also introduced to make the algorithm more robust to noise . However, the problem of obtaining ground truth data required for learning step limits the application of such algorithms.
|
3 |
Méthodes de démélange et de fusion des images multispectrales et hyperspectrales de télédétection spatiale / Unmixing and fusion methods for remote sensing multispectral and hypersectral imagesBenhalouche, Fatima Zohra 03 May 2018 (has links)
Au cours de cette thèse, nous nous sommes intéressés à deux principales problématiques de la télédétection spatiale de milieux urbains qui sont : le "démélange spectral " et la "fusion". Dans la première partie de la thèse, nous avons étudié le démélange spectral d'images hyperspectrales de scènes de milieux urbains. Les méthodes développées ont pour objectif d'extraire, d'une manière non-supervisée, les spectres des matériaux présents dans la scène imagée. Le plus souvent, les méthodes de démélange spectral (méthodes dites de séparation aveugle de sources) sont basées sur le modèle de mélange linéaire. Cependant, lorsque nous sommes en présence de paysage non-plat, comme c'est le cas en milieu urbain, le modèle de mélange linéaire n'est plus valide et doit être remplacé par un modèle de mélange non-linéaire. Ce modèle non-linéaire peut être réduit à un modèle de mélange linéaire-quadratique/bilinéaire. Les méthodes de démélange spectral proposées sont basées sur la factorisation matricielle avec contrainte de non-négativité, et elles sont conçues pour le cas particulier de scènes urbaines. Les méthodes proposées donnent généralement de meilleures performances que les méthodes testées de la littérature. La seconde partie de cette thèse à été consacrée à la mise en place de méthodes qui permettent la fusion des images multispectrale et hyperspectrale, afin d'améliorer la résolution spatiale de l'image hyperspectrale. Cette fusion consiste à combiner la résolution spatiale élevée des images multispectrales et la haute résolution spectrale des images hyperspectrales. Les méthodes mises en place sont des méthodes conçues pour le cas particulier de fusion de données de télédétection de milieux urbains. Ces méthodes sont basées sur des techniques de démélange spectral linéaire-quadratique et utilisent la factorisation en matrices non-négatives. Les résultats obtenus montrent que les méthodes développées donnent globalement des performances satisfaisantes pour la fusion des données hyperspectrale et multispectrale. Ils prouvent également que ces méthodes surpassent significativement les approches testées de la littérature. / In this thesis, we focused on two main problems of the spatial remote sensing of urban environments which are: "spectral unmixing" and "fusion". In the first part of the thesis, we are interested in the spectral unmixing of hyperspectral images of urban scenes. The developed methods are designed to unsupervisely extract the spectra of materials contained in an imaged scene. Most often, spectral unmixing methods (methods known as blind source separation) are based on the linear mixing model. However, when facing non-flat landscape, as in the case of urban areas, the linear mixing model is not valid any more, and must be replaced by a nonlinear mixing model. This nonlinear model can be reduced to a linear-quadratic/bilinear mixing model. The proposed spectral unmixing methods are based on matrix factorization with non-negativity constraint, and are designed for urban scenes. The proposed methods generally give better performance than the tested literature methods. The second part of this thesis is devoted to the implementation of methods that allow the fusion of multispectral and hyperspectral images, in order to improve the spatial resolution of the hyperspectral image. This fusion consists in combining the high spatial resolution of multispectral images and high spectral resolution of hyperspectral images. The implemented methods are designed for urban remote sensing data. These methods are based on linear-quadratic spectral unmixing techniques and use the non-negative matrix factorization. The obtained results show that the developed methods give good performance for hyperspectral and multispectral data fusion. They also show that these methods significantly outperform the tested literature approaches.
|
4 |
Contributions au démélange non-supervisé et non-linéaire de données hyperspectrales / Contributions to unsupervised and nonlinear unmixing of hyperspectral dataAmmanouil, Rita 13 October 2016 (has links)
Le démélange spectral est l’un des problèmes centraux pour l’exploitation des images hyperspectrales. En raison de la faible résolution spatiale des imageurs hyperspectraux en télédetection, la surface représentée par un pixel peut contenir plusieurs matériaux. Dans ce contexte, le démélange consiste à estimer les spectres purs (les end members) ainsi que leurs fractions (les abondances) pour chaque pixel de l’image. Le but de cette thèse estde proposer de nouveaux algorithmes de démélange qui visent à améliorer l’estimation des spectres purs et des abondances. En particulier, les algorithmes de démélange proposés s’inscrivent dans le cadre du démélange non-supervisé et non-linéaire. Dans un premier temps, on propose un algorithme de démelange non-supervisé dans lequel une régularisation favorisant la parcimonie des groupes est utilisée pour identifier les spectres purs parmi les observations. Une extension de ce premier algorithme permet de prendre en compte la présence du bruit parmi les observations choisies comme étant les plus pures. Dans un second temps, les connaissances a priori des ressemblances entre les spectres à l’échelle localeet non-locale ainsi que leurs positions dans l’image sont exploitées pour construire un graphe adapté à l’image. Ce graphe est ensuite incorporé dans le problème de démélange non supervisé par le biais d’une régularisation basée sur le Laplacian du graphe. Enfin, deux algorithmes de démélange non-linéaires sont proposés dans le cas supervisé. Les modèles de mélanges non-linéaires correspondants incorporent des fonctions à valeurs vectorielles appartenant à un espace de Hilbert à noyaux reproduisants. L’intérêt de ces fonctions par rapport aux fonctions à valeurs scalaires est qu’elles permettent d’incorporer un a priori sur la ressemblance entre les différentes fonctions. En particulier, un a priori spectral, dans un premier temps, et un a priori spatial, dans un second temps, sont incorporés pour améliorer la caractérisation du mélange non-linéaire. La validation expérimentale des modèles et des algorithmes proposés sur des données synthétiques et réelles montre une amélioration des performances par rapport aux méthodes de l’état de l’art. Cette amélioration se traduit par une meilleure erreur de reconstruction des données / Spectral unmixing has been an active field of research since the earliest days of hyperspectralremote sensing. It is concerned with the case where various materials are found inthe spatial extent of a pixel, resulting in a spectrum that is a mixture of the signatures ofthose materials. Unmixing then reduces to estimating the pure spectral signatures and theircorresponding proportions in every pixel. In the hyperspectral unmixing jargon, the puresignatures are known as the endmembers and their proportions as the abundances. Thisthesis focuses on spectral unmixing of remotely sensed hyperspectral data. In particular,it is aimed at improving the accuracy of the extraction of compositional information fromhyperspectral data. This is done through the development of new unmixing techniques intwo main contexts, namely in the unsupervised and nonlinear case. In particular, we proposea new technique for blind unmixing, we incorporate spatial information in (linear and nonlinear)unmixing, and we finally propose a new nonlinear mixing model. More precisely, first,an unsupervised unmixing approach based on collaborative sparse regularization is proposedwhere the library of endmembers candidates is built from the observations themselves. Thisapproach is then extended in order to take into account the presence of noise among theendmembers candidates. Second, within the unsupervised unmixing framework, two graphbasedregularizations are used in order to incorporate prior local and nonlocal contextualinformation. Next, within a supervised nonlinear unmixing framework, a new nonlinearmixing model based on vector-valued functions in reproducing kernel Hilbert space (RKHS)is proposed. The aforementioned model allows to consider different nonlinear functions atdifferent bands, regularize the discrepancies between these functions, and account for neighboringnonlinear contributions. Finally, the vector-valued kernel framework is used in orderto promote spatial smoothness of the nonlinear part in a kernel-based nonlinear mixingmodel. Simulations on synthetic and real data show the effectiveness of all the proposedtechniques
|
Page generated in 0.3413 seconds