Spelling suggestions: "subject:"dépendances statistique"" "subject:"dépendance statistique""
1 |
Dépendances non linéaires en finance / Non linear dependences in financeChicheportiche, Rémy 27 June 2013 (has links)
La thèse est composée de trois parties. La partie I introduit les outils mathématiques et statistiques appropriés pour l'étude des dépendances, ainsi que des tests statistiques d'adéquation pour des distributions de probabilité empiriques. Je propose deux extensions des tests usuels lorsque de la dépendance est présente dans les données, et lorsque la distribution des observations a des queues larges. Le contenu financier de la thèse commence à la partie II. J'y présente mes travaux concernant les dépendances transversales entre les séries chronologiques de rendements journaliers d'actions, c'est à dire les forces instantanées qui relient plusieurs actions entre elles et les fait se comporter collectivement plutôt qu'individuellement. Une calibration d’un nouveau modèle à facteurs est présentée ici, avec une comparaison à des mesures sur des données réelles. Finalement, la partie III étudie les dépendances temporelles dans des séries chronologiques individuelles, en utilisant les mêmes outils et mesures de corrélations. Nous proposons ici deux contributions à l'étude du « volatility clustering », de son origine et de sa description: l'une est une généralisation du mécanisme de rétro-action ARCH dans lequel les rendements sont auto-excitants, et l'autre est une description plus originale des auto-dépendances en termes de copule. Cette dernière peut être formulée sans modèle et n'est pas spécifique aux données financières. En fait, je montre ici aussi comment les concepts de récurrences, records, répliques et temps d'attente, qui caractérisent la dynamique dans les séries chronologiques, peuvent être écrits dans la cadre unifié des copules. / The thesis is composed of three parts. Part I introduces the mathematical and statistical tools that are relevant for the study of dependences, as well as statistical tests of Goodness-of-fit for empirical probability distributions. I propose two extensions of usual tests when dependence is present in the sample data and when observations have a fat-tailed distribution. The financial content of the thesis starts in Part II. I present there my studies regarding the “cross-sectional” dependences among the time series of daily stock returns, i.e. the instantaneous forces that link several stocks together and make them behave somewhat collectively rather than purely independently. A calibration of a new factor model is presented here, together with a comparison to measurements on real data. Finally, Part III investigates the temporal dependences of single time series, using the same tools and measures of correlation. I propose two contributions to the study of the origin and description of “volatility clustering”: one is a generalization of the ARCH-like feedback construction where the returns are self-exciting, and the other one is a more original description of self-dependences in terms of copulas. The latter can be formulated model-free and is not specific to financial time series. In fact, I also show here how concepts like recurrences, records, aftershocks and waiting times, that characterize the dynamics in a time series can be written in the unifying framework of the copula.
|
2 |
Dépendances non linéaires en financeChicheportiche, Rémy 27 June 2013 (has links) (PDF)
La thèse est composée de trois parties. La partie I introduit les outils mathématiques et statistiques appropriés pour l'étude des dépendances, ainsi que des tests statistiques d'adéquation pour des distributions de probabilité empiriques. Je propose deux extensions des tests usuels lorsque de la dépendance est présente dans les données, et lorsque la distribution des observations a des queues larges. Le contenu financier de la thèse commence à la partie II. J'y présente mes travaux concernant les dépendances transversales entre les séries chronologiques de rendements journaliers d'actions, c'est à dire les forces instantanées qui relient plusieurs actions entre elles et les fait se comporter collectivement plutôt qu'individuellement. Une calibration d'un nouveau modèle à facteurs est présentée ici, avec une comparaison à des mesures sur des données réelles. Finalement, la partie III étudie les dépendances temporelles dans des séries chronologiques individuelles, en utilisant les mêmes outils et mesures de corrélations. Nous proposons ici deux contributions à l'étude du " volatility clustering ", de son origine et de sa description: l'une est une généralisation du mécanisme de rétro-action ARCH dans lequel les rendements sont auto-excitants, et l'autre est une description plus originale des auto-dépendances en termes de copule. Cette dernière peut être formulée sans modèle et n'est pas spécifique aux données financières. En fait, je montre ici aussi comment les concepts de récurrences, records, répliques et temps d'attente, qui caractérisent la dynamique dans les séries chronologiques, peuvent être écrits dans la cadre unifié des copules.
|
3 |
Approximation of OLAP queries on data warehouses / Approximation aux requêtes OLAP sur les entrepôts de donnéesCao, Phuong Thao 20 June 2013 (has links)
Nous étudions les réponses proches à des requêtes OLAP sur les entrepôts de données. Nous considérons les réponses relatives aux requêtes OLAP sur un schéma, comme les distributions avec la distance L1 et rapprocher les réponses sans stocker totalement l'entrepôt de données. Nous présentons d'abord trois méthodes spécifiques: l'échantillonnage uniforme, l'échantillonnage basé sur la mesure et le modèle statistique. Nous introduisons également une distance d'édition entre les entrepôts de données avec des opérations d'édition adaptées aux entrepôts de données. Puis, dans l'échange de données OLAP, nous étudions comment échantillonner chaque source et combiner les échantillons pour rapprocher toutes requêtes OLAP. Nous examinons ensuite un contexte streaming, où un entrepôt de données est construit par les flux de différentes sources. Nous montrons une borne inférieure de la taille de la mémoire nécessaire aux requêtes approximatives. Dans ce cas, nous avons les réponses pour les requêtes OLAP avec une mémoire finie. Nous décrivons également une méthode pour découvrir les dépendances statistique, une nouvelle notion que nous introduisons. Nous recherchons ces dépendances en basant sur l'arbre de décision. Nous appliquons la méthode à deux entrepôts de données. Le premier simule les données de capteurs, qui fournissent des paramètres météorologiques au fil du temps et de l'emplacement à partir de différentes sources. Le deuxième est la collecte de RSS à partir des sites web sur Internet. / We study the approximate answers to OLAP queries on data warehouses. We consider the relative answers to OLAP queries on a schema, as distributions with the L1 distance and approximate the answers without storing the entire data warehouse. We first introduce three specific methods: the uniform sampling, the measure-based sampling and the statistical model. We introduce also an edit distance between data warehouses with edit operations adapted for data warehouses. Then, in the OLAP data exchange, we study how to sample each source and combine the samples to approximate any OLAP query. We next consider a streaming context, where a data warehouse is built by streams of different sources. We show a lower bound on the size of the memory necessary to approximate queries. In this case, we approximate OLAP queries with a finite memory. We describe also a method to discover the statistical dependencies, a new notion we introduce. We are looking for them based on the decision tree. We apply the method to two data warehouses. The first one simulates the data of sensors, which provide weather parameters over time and location from different sources. The second one is the collection of RSS from the web sites on Internet.
|
Page generated in 0.1077 seconds