• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coarse-grain modeling of proteins : mechanics, dynamics and function / Modèles gros-grain des protéines : mécanique, dynamique et fonction

Ceres, Nicoletta 16 March 2012 (has links)
Les protéines sont des molécules flexibles, qui accomplissent une variété de tâches cellulaires à travers des mouvements mécaniques et des changements conformationnels encodés dans leur structure tridimensionnelle. Parmi les approches théoriques qui contribuent à une meilleure compréhension de la relation entre structure, mécanique, dynamique et fonction des protéines, les modèles gros-grains sont un outil très puissant. Ils permettent d’intégrer des informations structurales et dynamiques à un coût computationnel réduit, car le traitement explicite des degrés de liberté moins importants est supprimé. Dans le cadre de cette thèse, des études comparatives rapides de la flexibilité et de la mécanique des protéines ont été menées en se servant du simple modèle gros-grains de Réseau Élastique. La dépendance des résultats de la conformation de départ, ainsi que une liberté dynamique de la chaine principale plutôt limitée, imposée par l’approximation harmonique, nous ont motivé à développer une nouvelle approche, permettant une exploration plus extensive de l’espace conformationnel. Les efforts ont conduit à PaLaCe, modèle gros-grains qui permet des changements majeurs de la structure secondaire, tout en gardant la spécificité de la séquence des acides aminés grâce à une représentation à basse résolution. En utilisant PaLaCe nous avons simulé deux processus impliquant la plasticité protéique: le dépliement du domaine I27 de la protéine musculaire titine et la dynamique à l’équilibre autour de la structure native de deux enzymes homologues adaptées à des températures différentes. Les résultats obtenus concordent avec les données expérimentales et les résultats issus de modèles tout-atom déjà publiés. PaLaCe s’avère donc être un modèle fiable, avec des temps de calcul restreints par rapport aux modèles tout-atome, tout en conservant un bon niveau de détail. Il offre ainsi la possibilité d’effectuer une recherche systématique sur les liens entre mécanique, dynamique et fonction des protéines / Proteins are flexible molecules, which accomplish a variety of cellular tasks through mechanical motions and conformational fluctuations encoded in their three-dimensional structure. Amongst the theoretical approaches contributing to a better understanding of the relationship between protein structure, mechanics, dynamics and function, coarse-grain models are a powerful tool. They can be used to integrate structural and dynamic information over broad time and size scales at a low computational cost, achieved by averaging out the less important degrees of freedom. In this work, fast comparative studies of protein flexibility and mechanics have been performed with the simple coarse-grain Elastic Network Model. However, the dependency of the results on the starting conformation, and the rather constrained backbone dynamics imposed by the harmonic approximation, motivated the development of a new approach, for a more extensive exploration of conformational space. These efforts led to the PaLaCe model, designed to allow significant changes in secondary structure, while maintaining residue specificity despite a lower-level resolution. Using PaLaCe, we were able to reproduce two processes involving protein plasticity: the mechanical unfolding of the I27 domain of the giant muscle protein titin and the near-native dynamics of two homologous enzymes adapted to work at different temperatures. Agreement with experimental data and results from published atomistic models demonstrate that PaLaCe is a reliable, sufficiently accurate, but computationally inexpensive approach. It therefore opens the doors for a systematic investigation of the link between protein dynamics/mechanics and function
2

Étude de la thermodynamique et de la coopérativité du repliement des protéines par haute pression / Study of the thermodynamics and cooperativity of protein folding by high pressure

Fossat, Martin 15 December 2016 (has links)
Ce travail de thèse ce concentre sur l’étude des protéines par l’usage de haute pression. Les articles présentés ici sont précéder d’une introduction présentant les différents modèles physiques utilisés pour décrire le repliement des protéines, une introduction posant les bases de la thermodynamique, ainsi que l’origine de la stabilité thermodynamique des protéines dans leur état plies. Il y a trois sujets principaux aborder dans ce mémoire. Le premier est l’étude de la coopérativité du repliement et du paysage de repliement de la protéine à répétition PP32 (Anp32a) a travers l’utilisation de la pression a différentes températures. La seconde étude concerne l’investigation de l’origine de l’expansivité thermique des protéines pliées grâce à l’utilisation de RMN haute pression et de la protéine très bien caractérisée Staphylococcal Nuclease (SNase) et de certaine de ses mutantes. Finalement, un dernier article sur la stabilité sous pression de la variant TC5b de la mini protéine model tryptophan-cage grâce une combinaison de RMN et de simulations moléculaires tout-atomes en « replica exchange ». / This thesis work focuses on the study of protein though the use of high pressure. There are three main points subject that are being inquired here. The first is the study of cooperativity and folding landscape of a repeat protein (Anp32a) though the use high pressure denaturation at different temperatures. The second concerns the investigation of the determinant of thermal expansivity in the folded state of protein using high pressure NMR, and the well characterized Staphylococcal Nuclease (SNase) and some of its mutants. Finally, a last article on the pressure stability of the model mini protein Tryptophan cage variant Tc5b by a combination of high pressure NMR and full atomic replica exchange simulations.

Page generated in 0.1163 seconds