Spelling suggestions: "subject:"détecteurs optiques."" "subject:"detecteurs optiques.""
1 |
Photodetection nonlinearity in dual-comb interferometryGuay, Philippe 25 January 2024 (has links)
Thèse ou mémoire avec insertion d'articles / La non-linéarité des photodétecteurs constitue un obstacle à l'élargissement des frontières en spectroscopie double-peigne. Cette limitation restreint la puissance qui peut être envoyée au photodétecteur, et par conséquent, entrave les performances des spectromètres jusqu'à un point où l'étude de phénomènes exigeant une courte durée de mesure et un rapport signal sur bruit élevé devient impossible. En limitant la puissance sur le détecteur, il devient nécessaire de moyenner le signal pour améliorer le rapport signal sur bruit et ce, jusqu'à plusieurs heures ce qui n'est simplement pas possible pour plusieurs applications. Alors que la non-linéarité est déjà reconnue comme problématique en interférométrie par transformée de Fourier, la communauté optique travaille sur les peigne de fréquence offrant des niveaux de puissance dix fois supérieurs à ce que peut accepter un photodétecteur en régime linéaire et la qualité des mesures révèle maintenant que la non-linéarité produit un niveau d'erreur systématique significatif. Il s'en suit donc un besoin de comprendre le phénomène, de gérer les erreurs systématiques et d'améliorer la chaine de détection pour tirer avantage du niveau de puissance disponible. Le problème de non-linearité des photodétecteurs est étudié en profondeur dans cette thèse. D'abord, le problème de la détection est abordé en étudiant la réaction du photodétecteur à une impulsion unique, ce qui permet de simplifier la situation. Ce faisant, il a été possible d'identifier l'amplificateur du détecteur comme une source majeure de non-linéarité pour plusieurs détecteurs couramment utilisés. La non-linéarité du photodétecteur altère les impulsions optiques qui dépendent de la puissance incidente sur le détecteur, entraînant ainsi une déformation de l'information interférométrique encodée dans l'amplitude des battements entre les deux sources pulsées. Il est d'ailleurs montré que les raies d'absorption encodées dans le signal subissent des déformations en raison de la non-linéarité, pouvant conduire à une mauvaise estimation de la concentration de gaz mesurée dans une expérience de détection de gaz. La distortion de l'information qui se produit lors du fonctionnement d'un détecteur en régime non linéaire soulève la question de savoir si de l'information a été perdue dans la détection ou si une correction a posteriori permet de retrouver l'information originale. Il est démontré qu'en respectant certaines conditions expérimentales, la non-linéarité peut être considérée statique et qu'il est possible de retrouver un spectre minimalement entaché par des erreurs systématiques dues à la non linéarité, et ce même si la chaine de détection est opérée en régime fortement non linéaire. Un algorithme de correction basé sur la minimisation des artéfacts spectraux hors bande permet de retrouver un spectre corrigé avec un fort rapport signal sur bruit pour une courte durée de mesure. Il est également démontré qu'il existe des conditions expérimentales qui minimisent les impacts de la non-linéarité. Une première solution consiste à utiliser un détecteur sans amplificateur qui sature. Il est montré que sans amplificateur, la réponse non linéaire de la photodiode en régime de haute puissance crête n'a aucun impact lorsque le signal est adéquatement filtré, ce qui permet de préserver la condition de linéarité sur les interférogrammes mesurés. Ceci est possible pour les détecteurs qui présentent une relation linéaire entre l'aire de leur réponse impulsionnelle et la puissance incidente. Lorsque la relation entre l'aire et la puissance d'un photodétecteur n'est pas linéaire, il est nécessaire d'avoir recours à l'algorithme de correction mentionné précédemment. Ayant géré et minimisé les impacts de la non-linéarité des photodétecteur, des signaux haute puissance peuvent être utilisés pour produire des mesures avec de forts rapports signal sur bruit pour de courtes durées de mesure, ce qui crée de nouvelles possibilités. Par exemple, il a été possible de mettre en évidence des formes de raies asymétriques suivant le modèle de Fano et dépendant de la puissance crête excitant le gas sous étude en spectroscopie moléculaire. L'expérience a permis de montrer que les conditions d'étirement temporel des impulsions influencent le niveau d'asymétrie des raies, puisque celui-ci est influencée par l'intensité crête des impulsions. Les deux premiers chapitres de la thèse s'attardent à la manifestation de la non-linéarité dans le contexte de la spectroscopie par double-peigne. L'impact de la non-linéarité est décrit pour des détecteurs commerciaux afin de montrer que les détecteurs sont utilisés dans un régime non linéaire bien avant la limite de puissance moyenne donnée par le fabricant. L'impact de la non-linéarité en spectroscopie double-peigne est comparé à celui en spectroscopie classique pour noter les similitudes et les différences. Une mesure d'absorption est réalisée dans un régime linéaire et non linéaire pour bien comprendre l'impact de la non-linéarité. Les chapitres trois et quatre donnent une vue d'ensemble sur la gestion de la non-linearité, que ce soit en la corrigeant par traitement numérique ou en la réduisant en respectant certaines conditions expérimentales. Le chapitre cinq présente l'observation d'un phénomène visible seulement avec un fort rapport signal sur bruit : la résonance de Fano. Finalement, le chapitre 6 dresse un portrait complet de la photodétection linéaire en spectroscopie double-peigne. / Photodetector nonlinearity (NL) is a substantial roadblock to expanding the frontiers of dual-comb spectroscopy (DCS). It restricts the power sent to a detector and ultimately limits the performances of spectrometers, reaching a point where it can hinder the study of phenomena that require both rapid measurement and a high signal-to-noise ratio (SNR). By limiting the power on a detector, experimentalists resort to averaging the signal to improve the SNR, but averaging for hours may become impractical for several applications. While detector NL has been known to be an issue in classical Fourier transform spectroscopy (FTS), the community has been using frequency combs with power levels more than ten times the amount a detector can tolerate in its linear operating regime, and the quality of measurement has reached a point where NL produces significant systematic errors. There is thus a need to understand what happens when a detector is over-illuminated, in order to provide adequate management of systematic NL errors and improvements to the detection chain to fully benefit from the information carried by the optical signal. This nonlinearity problem is thoroughly studied in this thesis. First, the photodetector's response to a dual-comb interferometric signal is analyzed by breaking it down into its reaction to a single optical pulse to gain insight into the core of the issue. This has enabled the identification of the amplifier as a main source of nonlinearity for several widely used detectors, marking a significant step towards addressing the nonlinearity problem. The nonlinearity of the photodetector creates optical pulse distortions that depend on the incident power on the detector, thus deforming the interferometric information encoded in the amplitude of the beatings between the two pulsed sources. It is demonstrated that absorption features are distorted and may lead to an incorrect estimation of gas concentration in a gas detection experiment. The distortion of information occurring under NL conditions raises a concern to know if any information is lost in the process, or if a posteriori correction is possible to retrieve the original information. It is shown that if experimental conditions are such that NL can be assumed static, the retrieval of a linear spectrum is possible. A correction algorithm based on the minimization of out-of-band spectral artifacts allowing to retrieve a high SNR spectrum acquired in a short measurement time is provided. It is also shown that there are experimental conditions that one can respect to minimize the impact of nonlinearity on a measurement. Having a detector without a saturating amplifier is a first solution. It is shown that without amplifier, the detector may still show nonlinear behaviour due to the photodiode's nonlinear response to an over-illumination, but it can be managed by proper filtering to preserve the linearity of the dual-comb signal. This is possible for detectors whose impulse response area present a linear relation with input power. If the area to power relation is not linear, the previously mentioned NL correction may be applied. With NL impacts on dual-comb interferometry properly handled and minimized, higher powers can be used to produce a useful signal and thus higher SNR measurement can be performed in short durations. This paves the way to new possibilities. As such, it has been possible to observe Fano resonances in molecular spectroscopy. This has been observed as asymmetric absorption lines in a transmission spectrum. It is demonstrated that temporal pulse broadening through chirping can reduce the impact if the pulses are sufficiently broadened to reduce the high intensity excitation of gas molecules. The first two chapters of this thesis focus on the manifestation of nonlinearity in the context of dual-comb spectroscopy. The impact of NL are described in commonly used photodetectors to show that the detectors reach a nonlinear regime well below the power threshold provided by the manufacturer. The impact of NL in DCS is then compared to its impact in FTS to highlight the similarities and differences. A spectroscopic measurement for linear and nonlinear signals is also demonstrated. The third and fourth chapters provide insights on how to manage nonlinearity whether it is necessary to correct for it or whether it is possible to avoid it by respecting given conditions. The fifth chapter presents an observation of a phenomenon in dual-comb spectroscopy that high SNR has allowed to see : Fano resonance. Finally, the sixth chapter draws a complete picture of the optimal photodetection in dual-comb interferometry.
|
2 |
Segmentation d'un patron de lumière structurée : vision 3D active et codée utilisant la lumière blancheParadis, Nicolas 17 April 2018 (has links)
Les capteurs basés sur la lumière structurée codée prennent une ampleur grandissante dans le domaine de la numérisation 3D. Ce type de capteur permet une numérisation plus rapide de la surface d'un objet comparativement aux capteurs laser ou aux systèmes de palpage (i.e. numérisation avec contact). De plus, les capteurs fonctionnant par la projection d'une seule trame offrent la possibilité de numériser des scènes en mouvement, ce qui est un avantage indéniable sur la majorité des capteurs commercialisés depuis quelques années. Le projet de recherche traité dans ce mémoire a été réalisé dans le cadre du développement d'un capteur basé sur la lumière blanche structurée, conçu par l'équipe de vision 3D du Laboratoire de Vision et Systèmes Numériques de l'Université Laval. Un tel capteur utilise un projecteur afin de projeter un patron de lumière codée sur la scène. Ce patron se déforme au contact de la surface et sa réflexion est captée par une caméra. Cette déformation permet de déduire la profondeur de la surface et ainsi calculer la position de points 3D représentant la surface de l'objet. Le rôle de ce mémoire est de développer et implanter un algorithme de segmentation d'images qui a comme objectif d'extraire le patron de la scène. Les images acquises par le capteur sont traitées en utilisant une approche basée sur les arêtes pour détecter les primitives contenue dans le patron. Chacune de ces primitives encode un symbole formant un mot codé. Le but de l'algorithme est donc de déterminer la position et l'étiquette (i.e. la valeur du symbole) associées à ces primitives. L'apparence de la scène complique cette tâche, car les propriétés de la surface (e.g. texture, déformations géométriques, type de matériaux) peuvent interférer avec la réflexion du patron. Par exemple, un objet de couleur foncée réfléchira très peu la lumière projetée, tandis qu'une surface géométriquement complexe déformera le patron, pouvant rendre les symboles flous et difficiles à détecter. La robustesse de l'algorithme face à ces défis est analysée et nous soulevons les limitations d'une telle approche de segmentation.
|
Page generated in 0.1737 seconds