• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-Dose Quinpirole Ontogenically Sensitizes to Quinpirole-Induced Yawning in Rats

Kostrzewa, Richard M., Brus, Ryszard, Rykaczewska, Monika, Plech, Andrzej 01 January 1993 (has links)
It is known that dopamine (DA) receptors can be sensitized by repeated treatments with quinpirole during postnatal development. This study was undertaken to determine whether low-dose quinpirole treatments might sensitize receptors to quinpirole-induced yawning behavior. Rats were treated with quinpirole HCl (50 μg/kg per day) or saline at four different periods of ontogeny: a) the 10th day of gestation to day of birth; b) 1st-11th days after birth; c) 12th-22nd days from birth; or d) 23rd-33rd days from birth. The numbers of yawns occuring in 1 h after a challenge dose of quinpirole HCl (50 μg/kg, IP) was determined at 6 weeks. Rats exposed prenatally to quinpirole demonstrated increased numbers of yawns following the third dose of quinpirole (2-day interval between doses). In rats exposed postnatally to quinpirole, there was a 70-300% increase in the yawning response, with the greatest response occuring in the group treated with quinpirole from birth to 11 days from birth. The findings demonstrate that quinpirole receptors are sensitized by a low dose of quinpirole, 60-fold lower than previously shown. It is suggested that sensitized receptors are of the DA D3 subclass.
2

Dopamine Receptor Supersensitivity

Kostrzewa, Richard M. 01 January 1995 (has links)
Dopamine (DA) receptor supersensitivity refers to the phenomenon of an enhanced physiological, behavioral or biochemical response to a DA agonist. Literature related to ontogenetic aspects of this process was reviewed. Neonatal 6-hydroxydopamine (6-OHDA) destruction of rat brain DA neurons produces overt sensitization to D1 agonist-induced oral activity, overt sensitization of some D2 agonist-induced stereotyped behaviors and latent sensitization of D1 agonist-induced locomotor and some stereotyped behaviors. This last process is unmasked by repeated treatments with D1 (homologous "priming") or D2 (heterologous "priming") agonists. A serotonin (5-HT) neurotoxin (5,7-dihydroxytryptamine) and 5-HT2C receptor antagonist (mianserin) attenuate some enhanced behavioral effects of D1 agonists, indicating that 5-HT neurochemical systems influence D1 receptor sensitization. Unlike the relative absence of change in brain D1 receptor number, DA D2 receptor proliferation accompanies D2 sensitization in neonatal 6-OHDA-lesioned rats. Robust D2 receptor supersensitization can also be induced in intact rats by repeated treatments in ontogeny with the D2 agonist quinpirole. In these rats quinpirole treatments produce vertical jumping at 3-5 wk after birth and subsequent enhanced quinpirole-induced antinociception and yawning. The latter is thought to represent D3 receptor sensitization. Except for enhanced D1 agonist-induced expression of c-fos, there are no changes in the receptor or receptor-mediated processes which account for receptor sensitization. Adaptive mechanisms by multiple "in series" neurons with different neurotransmitters may account for the phenomenon known as receptor supersensitivity.

Page generated in 0.0294 seconds