• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 13
  • 13
  • 13
  • 12
  • 12
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

H<sub>3</sub> Receptor Agonist- and Antagonist-Evoked Vacuous Chewing Movements in 6-OHDA-Lesioned Rats Occurs in an Absence of Change in Microdialysate Dopamine Levels

Nowak, Przemysław, Dabrowska, Joanna, Bortel, Aleksandra, Biedka, Izabela, Szczerbak, Grazyna, Słomian, Grzegorz, Kostrzewa, Richard M., Brus, Ryszard 15 December 2006 (has links)
In rats lesioned neonatally with 6-hydroxydopamine (6-OHDA), repeated treatment with SKF 38393 (1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol), a dopamine D1/D5 receptor agonist, produces robust stereotyped and locomotor activities. The gradual induction of dopamine D1 receptor supersensitivity is known as a priming phenomenon, and this process is thought to underlie not only the appearance of vacuous chewing movements in humans with tardive dyskinesia, but also the onset of motor dyskinesias in l-dihydroxyphenylalanine (l-DOPA)-treated Parkinson's disease patients. The object of the present study was to determine the possible influence of the histaminergic system on dopamine D1 agonist-induced activities. We found that neither imetit (5.0 mg/kg i.p.), a histamine H3 receptor agonist, nor thioperamide (5.0 mg/kg i.p.), a histamine H3 receptor antagonist/inverse agonist, altered the numbers of vacuous chewing movements in non-primed-lesioned rats. However, in dopamine D1 agonist-primed rats, thioperamide alone produced a vacuous chewing movements response (i.e., P < 0.05 vs SKF 38393, 1.0 mg/kg i.p.), but did not modify the SKF 38393 effect. Notably, both imetit and thioperamide-induced catalepsy in both non-primed and primed 6-OHDA-lesioned rats, comparable in magnitude to the effect of the dopamine D1/D5 receptor antagonist SCH 23390 (7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine; 0.5 mg/kg i.p.). Furthermore, in primed animals both imetit and thioperamide intensified SCH 23390-evoked catalepsy. In vivo microdialysis established that neither imetit nor thioperamide altered extraneuronal levels of dopamine and its metabolites in the striatum of 6-OHDA-lesioned rats. On the basis of the present study, we believe that histaminergic systems may augment dyskinesias induced by dopamine receptor agonists, independent of direct actions on dopaminergic neurons.
12

Dopamine Receptor Supersensitivity

Kostrzewa, Richard M. 01 January 1995 (has links)
Dopamine (DA) receptor supersensitivity refers to the phenomenon of an enhanced physiological, behavioral or biochemical response to a DA agonist. Literature related to ontogenetic aspects of this process was reviewed. Neonatal 6-hydroxydopamine (6-OHDA) destruction of rat brain DA neurons produces overt sensitization to D1 agonist-induced oral activity, overt sensitization of some D2 agonist-induced stereotyped behaviors and latent sensitization of D1 agonist-induced locomotor and some stereotyped behaviors. This last process is unmasked by repeated treatments with D1 (homologous "priming") or D2 (heterologous "priming") agonists. A serotonin (5-HT) neurotoxin (5,7-dihydroxytryptamine) and 5-HT2C receptor antagonist (mianserin) attenuate some enhanced behavioral effects of D1 agonists, indicating that 5-HT neurochemical systems influence D1 receptor sensitization. Unlike the relative absence of change in brain D1 receptor number, DA D2 receptor proliferation accompanies D2 sensitization in neonatal 6-OHDA-lesioned rats. Robust D2 receptor supersensitization can also be induced in intact rats by repeated treatments in ontogeny with the D2 agonist quinpirole. In these rats quinpirole treatments produce vertical jumping at 3-5 wk after birth and subsequent enhanced quinpirole-induced antinociception and yawning. The latter is thought to represent D3 receptor sensitization. Except for enhanced D1 agonist-induced expression of c-fos, there are no changes in the receptor or receptor-mediated processes which account for receptor sensitization. Adaptive mechanisms by multiple "in series" neurons with different neurotransmitters may account for the phenomenon known as receptor supersensitivity.
13

Tardive Dyskinesia: Outcome of Antipsychotic Treatment and Brain Damage?

Kostrzewa, Richard M., Kostrzewa, John P., Brus, Ryszard 01 January 2014 (has links)
Tardive dyskinesia (TD), marked by abnormal involuntary movements and frequently expressed as perioral activity, represents an adverse outcome of prolonged antipsychotic therapy, occurring in approximately 5 % of patients per treatment year. Although neuronal mechanisms underlying TD are largely unknown, more recent experimental studies in animal models of TD are providing insight into the neuronal mechanisms associated with TD and implicating newer treatment approaches. It is now evident that a predominance in the ratio of dopamine (DA) D1:D2 receptor (R) activation accounts for induction of perioral movements in rodent models of TD, in nonhuman primate models of TD, and in humans with TD. Experimentally, TD is produced in animal models of TD, in a manner analogous to that by which TD is produced in humans - by continuous and prolonged administration of a DA D2R antagonist (i.e., an antipsychotic drug). More recently, in a rodent model of TD, it has been shown that a lesion of dopaminergic - mainly nigroneostriatal - neurons reduces the time latency for occurrence of TD, also increases the severity of perioral activity, and results in permanence of TD after complete removal of D2R antagonist treatment. The induction of perioral activity is related to DAR supersensitivity but unrelated to numbers of D2R and D2R in the neostriatum, a brain region associated with perioral activity. More apropos, serotoninergic systems are now recognized as having a greater role in effecting perioral activity, and it appears that 5-HT2C receptor antagonists are most effective in abating perioral activity in a rodent model of TD. These processes and mechanisms, topics addressed in this chapter, highlight a newer understanding of mechanisms underlying TD and provide insight into new approaches towards treatment of TD in humans.

Page generated in 0.0613 seconds