• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Production of Green Fuel: A Digital Baffle Batch Reactor for Enhanced Oxidative Desulfurization of Light Gas Oil Using Nano-Catalyst

Hameed, S.A., Nawaf, A.T., Mahmood, Q.A., Abdulateef, L.T., Jarullah, A.T., Mujtaba, Iqbal M. 04 July 2022 (has links)
Yes / A digital baffle batch reactor (DBBR) for oxidative desulfurization (ODS) reactions is designed and applied here in order to reduce the sulfur concentration presented in light gas oil (LGO) based on a novel homemade nano-catalyst (Copper Oxide (CuO)/Activated Carbon (AC)). With efficient impregnation, good pore size distribution, high activity and higher surface area, the designed nano-catalyst (CuO/AC) demonstrated excellent catalytic efficiency. To evaluate the effectiveness of nano catalyst (prepared experimentally), several experiments related to ODS reactions using the digital baffle batch reactor are carried out under moderate process conditions (reaction temperature (100, 120 and 140 °C), contact time (15, 30 and 45 min) and oxidant (H2O2) amount (2, 3 and 5 ml)). The experimental outcomes indicated that increasing the reaction temperature, batch time and oxidant amount lead to reduced sulfur concentration of oil feedstock leading to a greener fuel. The efficiency of sulfur conversion is reported to be 83.1 % using the modified nano-catalysts and new reactor (DBBR) at reaction temperature 140 oC, batch time 45 min and H2O2 amount of 5 ml. So, such new results using DBBR for ODS reactions based on CuO/AC as a new modified nano catalyst has not been reported in the public domain and it is considered as new results.

Page generated in 0.0272 seconds