• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Target Erosion Pattern Control and Performance Enhancement of DC Magnetron Sputtering Systems by Structural Adjustment

Yeh, Hsiao-chun 02 August 2011 (has links)
In the process of sputtering, what a system operator concerns are the sputtering rate, target utilization, and substrates uniformity. All of them are influenced by variables such as electromagnetic environment, chamber temperature, and pressure. In thin film manufacturing, targets bombarded by ions will sputter atoms to the substrates in order to make thin films; therefore, when a certain target zone is extensively bombarded by ions, target surface will become thinner. In general, when certain part of the target is penetrated, it is no longer usable while utilization rate only from 30 to 50 percent. It causes considerable waste and relatively higher costs. As a result, the objective of this study is to enhance target utilization and the sputtering rate through appropriate adjustment in the structure of the existing DC Magnetron Sputtering System (MSS). Since, the magnetic field distribution in the chamber will be appropriately adjusted inside the DC MSS with extra iron annulus and active compensation magnetizations being added. However, in order to get the better structural refinement of DC MSS it needs a thorough design and management based on Taguchi Method. Then, based on such structural adjustment, electron trajectories on top surface of targets can be conveniently controlled, and target erosion patterns and the number of ions bombarding the target will be indirectly controlled. It will, as a result, achieve the objective of this study by enhancing not only the target utilization efficiency but the sputtering rate.

Page generated in 0.107 seconds