• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DCAF12 Is Required For Synaptic Function and Plasticity at the Drosophila Neuromuscular Junction

Patrón, Lilian Adilene, Patrón, Lilian Adilene January 2017 (has links)
We employed imaging, electrophysiological, and molecular techniques with the genetically tractable model organism Drosophila melanogaster to unravel fundamental biological and genetic underpinnings regulating synaptic function and plasticity. Using a forward genetic screen, we identified mutations in the Drosophila ortholog of a human WD40 repeat-containing protein termed DDB1 and CUL4 associated factor 12 (DCAF12). We show that DCAF12 likely serves as an adaptor protein for the DDB1-Cul4 E3 ubiquitin ligase complex by recruiting specific target proteins for ubiquitination. DCAF12 is expressed in neurons, muscles, and glia. In mitotically active cells such as muscles, DCAF12 is localized to nuclei and co-localizes in distinct foci with CUL4, suggesting that DCAF12 mediates a nuclear role for the CUL4 E3 ubiquitin ligase complex. In neurons, DCAF12 is localized to both cytoplasmic and nuclear compartments of motor neuron cell bodies, where it colocalizes with Cul4 in nuclei. DCAF12 is also expressed at the periactive zone of presynaptic terminals, but does not distinctly associate with DDB1 or Cul4 at this region. Evoked neurotransmitter release at larval NMJs is significantly reduced in DCAF12 mutants. These defects are rescued by presynaptic expression of wild-type DCAF12, demonstrating that DCAF12 is required presynaptically and serves as an important component of the machinery that facilitates evoked release. In addition, our studies show that DCAF12 is required for the differential expression of glutamate receptor subunits at the larval NMJ through transcriptional and post-translational mechanisms. GluRIID subunit mRNA levels and GluRIIA/C/D subunit protein levels are increased at DCAF12 mutant NMJs. Normal GluRIIA subunit levels can be restored by postsynaptic expression of wild-type DCAF12, but not with a truncated DCAF12 protein lacking a nuclear localization signal (∆NLS-DCAF12). Furthermore, DCAF12 overexpression in muscle nuclei reduces synaptic GluRIIA levels, an effect that can be suppressed by removing a copy of Cul4. These data strongly indicate that DCAF12 in muscle nuclei is required for GluRIIA expression and/or function in a Cul4-dependent manner. Moreover, homozygous DCAF12-GluRIIA double mutants show a strong synthetic lethality phenotype, providing further support for the hypothesis that GluRIIA directly or indirectly requires DCAF12. Mutations in glutamate receptors at larval NMJs trigger a retrograde trans-synaptic signal that leads to a compensatory increase in presynaptic release, which precisely restores the normal efficacy of synaptic transmission and muscle excitation. Reducing the gene dosage of DCAF12 by one gene copy suppresses the initiation and maintenance of GluRIIA-mediated synaptic homeostatic potentiation. This block of synaptic homeostatic potentiation can be rescued by presynaptic expression of DCAF12. In our studies, we determined that DCAF12 is critical for 3 distinct synaptic mechanisms: evoked neurotransmitter release, neurotransmitter reception by regulation of GluR subunit composition, and retrograde synaptic homeostatic signaling. Future research will strive to identify presynaptic and postsynaptic protein targets of DCAF12 and the Cul4 E3 ubiquitin ligase complex and the role of ubiquitination in regulating these synaptic processes.
2

Identifikace a funkční charakterizace nových substrátů cullin-RING ubikvitin ligáz / Novel substrates of cullin-RING ubiquitin ligases: identification and functional characterisation

Liďák, Tomáš January 2022 (has links)
Selective protein degradation by the ubiquitin-proteasome system is essential for cellular homeostasis and the regulation of diverse biological processes. The selectivity of this system is imparted by hundreds of ubiquitin ligases that specifically recognise substrates and catalyse their ubiquitination, thereby targeting them for degradation. Among ubiquitin ligases, multisubunit cullin-RING ubiquitin ligases constitute the largest group. However, despite significant advances in understanding their assembly, regulation, and molecular architecture, the substrates and functions of most of them remain unknown. This thesis focuses on two ubiquitin ligases from the cullin-RING ubiquitin ligase 4 (CRL4) subfamily: CRL4DCAF4 and CRL4DCAF12 . To identify their candidate substrates and to address their biological roles, several different approaches have been employed. First, proteomic screening revealed a wide range of candidate substrates. Next, detailed characterisation of the identified interactions and exploration of the condition under which candidate substrates undergo degradation was performed. Finally, knockout human cell lines and mice with a targeted disruption of genes encoding DCAF4 and DCAF12 were generated to explore the physiological roles of CRL4DCAF4 and CRL4DCAF12 . In summary, the herein...

Page generated in 0.018 seconds