1 |
Inositol Pyrophosphate Phosphatases as Key Enzymes to Understand and Manipulate Phosphate Sensing in PlantsFreed, Catherine P. 28 January 2022 (has links)
Phosphorus (P) is one of the three major macronutrients that plants need to grow and survive. When P is scarce, plants utilize a network of characterized responses known as the Phosphate Starvation Response (PSR) to remobilize internal stores of P as well as external P from soil. Emerging evidence shows the PSR is regulated by a specialized group of secondary messenger molecules, inositol pyrophosphates (PP-InsP). PP-InsPs and their precursors, inositol phosphates (InsPs), are important for plant abiotic stress responses, hormone signaling, and other stress responses. While PP-InsPs are critical for plant survival, much about the roles of PP-InsPs and how they are regulated remains to be understood. Further, the enzymes responsible for the synthesis of PP-InsPs in plants have been recently discovered; however, not much is known about the enzymes that degrade PP-InsPs in plants. The goal of the work presented herein is to understand critical aspects of the PP-InsP signaling in plants and leverage this information into a P phytoremediation strategy. To achieve this, I have investigated a group of PP-InsP phosphatases and assessed long-term impacts of depleting PP-InsPs in two plant species, Arabidopsis thaliana (Arabidopsis) and Thlaspi arvense (Pennycress). Exploring the impact of plant PP-InsP phosphatases has allowed me to explore critical aspects of PP-InsP sensing that show great promise for informing P remediation strategies. / Doctor of Philosophy / The Phosphorus (P) crisis presents a major challenge to food security. While Phosphorus (P) is critical for crop growth, P is a nonrenewable and increasingly limited resource. Our global population is fed at the expense of the remaining mineable P reserve, which may be depleted in as early as 30 years. Further, fertilizer runoff from farmland and urban areas poses a dangerous problem as increased nutrients in watersheds toxifies our water supply and aquatic ecosystems. Time is running out to preserve our P supply. New and innovative strategies that reduce fertilizer inputs and watershed pollution are key to securing the global food supply and protecting the environment. Emerging evidence shows plants sense and respond to P using signaling molecules known as inositol pyrophosphates (PP-InsPs). My work and that of others are key in showing that alteration of the levels of PP-InsPs can decrease plant P dependency or cause plants to hyperaccumulate P. Understanding how plants are able to sense, respond, and acquire P is crucial to inform future P phytoremediation strategies to secure global food security.
|
Page generated in 0.018 seconds