141 |
Restauration d'images de noyaux cellulaires en microscopie 3D par l'introduction de connaissance a priori / Denoising 3D microscopy images of cell nuclei using shape priorsBouyrie, Mathieu 29 November 2016 (has links)
Cette thèse aborde la problématique de la restauration d’images 3D de noyaux cellulaires fluorescents issues de la microscopie 2-photons à balayage laser d’animaux observés in vivo et in toto au cours de leur développement embryonnaire. La dégradation originale de ces images provient des limitations des systèmes optiques, du bruit intrinsèque des systèmes de détection ansi que de l’absorption et la diffusion de la lumière dans la profondeur des tissus. A la différence des propositions de “débruitage” de l’état de l’art, nous proposons ici une méthode qui prend en compte les particularités des données biologiques. Cette méthode, adaptation à la troisième dimension d’un algorithme utilisé dans l’analyse d’image astronomique, tire parti de connaissances a priori sur les images étudiées. Les hypothèses émises portent à la fois sur la détérioration du signal par un bruit supposé Mixe Poisson Gaussien (MPG) et sur la nature des objets observés. Nous traitons ici le cas de noyaux de cellules embryonnaires que nous supposons quasi sphériques.L’implémentation en 3D doit prendre en compte les dimensions de la grille d’échantillonnage de l’image. En effet ces dimensions ne sont pas identiques dans les trois directions de l’espace et un objet sphérique échantillonné sur cette grille perd cette caractéristique. Pour adapter notre méthode à une telle grille, nous avons ré-interprété le processus de filtrage, au coeur de la théorie originale, comme un processus physique de diffusion. / In this this document, we present a method to denoise 3D images acquired by 2-photon microscopy and displaying cell nuclei of animal embryos. The specimens are observed in toto and in vivo during their early development. Image deterioration can be explained by the microscope optical flaws, the acquisition system limitations, and light absorption and diffusion through the tissue depth.The proposed method is a 3D adaptation of a 2D method so far applied to astronomical images and it also differs from state-of the of-the-art methods by the introduction of priors on the biological data. Our hypotheses include assuming that noise statistics are Mixed Poisson Gaussian (MPG) and that cell nuclei are quasi spherical.To implement our method in 3D, we had to take into account the sampling grid dimensions which are different in the x, y or z directions. A spherical object imaged on this grid loses this property. To deal with such a grid, we had to interpret the filtering process, which is a core element of the original theory, as a diffusion process.
|
142 |
Modélisation de fonds complexes statiques et en mouvement : application à la détection d'événements rares dans les séries d'images / Modeling of static or moving complex backgrounds : application to rare event detection in image sequencesDavy, Axel 22 November 2019 (has links)
{La première partie de cette thèse est dédiée à la modélisation d'images ou de vidéos considérés comme des fonds sur lesquels on s'attache à détecter des anomalies. Notre analyse de la littérature de la détection d'anomalie sur une seule image nous a fait identifier cinq différentes familles d'hypothèses structurelles sur le fond. Nous proposons de nouveaux algorithmes pour les problèmes de détection d'anomalie sur seule image, de détection de petites cibles sur un fond en mouvement, de détection de changements sur des images satellitaires SAR (Synthetic Aperture Radar) et de détection de nuages dans des séquences d'images de satellite optique.Dans une seconde partie, nous étudions deux autres applications de la modélisation de fond. Pour le débruitage vidéo, nous cherchons pour chaque patch de la vidéo, des patchs similaires le long de la séquence vidéo, et fournissons à un réseau de neurones convolutif les pixels centraux de ces patchs. Le modèle de fond est caché dans les poids du réseau de neurones. Cette méthode s'avère être la plus performante des méthodes par réseau de neurones comparées. Nous étudions également la synthèse de texture à partir d'un exemple. Dans ce problème, des échantillons de texture doivent être générés à partir d'un seul exemple servant de référence. Notre étude distingue les familles d'algorithmes en fonction du type de modèle adopté. Dans le cas des méthodes par réseau de neurones, nous proposons une amélioration corrigeant les artefacts de bord.Dans une troisième partie, nous proposons des implémentations temps-réel GPU de l'interpolation B-spline et de plusieurs algorithmes de débruitage d'images et de vidéo: NL-means, BM3D et VBM3D. La rapidité des implémentations proposées permet leur utilisation dans des scénarios temps-réel, et elles sont en cours de transfert vers l'industrie. / The first part of this thesis is dedicated to the modeling of image or video backgrounds, applied to anomaly detection. In the case of anomaly detection on a single image, our analysis leads us to find five different families of structural assumptions on the background. We propose new algorithms for single-image anomaly detection, small target detection on moving background, change detection on satellite SAR (Synthetic Aperture Radar) images and cloud detection on a sequence of satellite optical images.In the second part, we study two further applications of background modeling. To perform video denoising we search, for every video patch, similar patches in the video sequence, and feed their central pixels to a convolutional neural network (CNN). The background model in this case is hidden in the CNN weights. In our experiments, the proposed method is the best performing of the compared CNN-based methods. We also study exemplar-based texture synthesis. In this problem texture samples have to be generated based on only one reference sample. Our survey classifies the families of algorithms for this task according to their model assumptions. In addition, we propose improvements to fix the border behavior issues that we pointed out in several deep learning based methods.In the third part, we propose real-time GPU implementations for B-spline interpolation and for several image and video denoising algorithms: NL-means, BM3D and VBM3D. The speed of the proposed implementations enables their use in real-time scenarios, and they are currently being transitioned to industry.
|
143 |
Odstraňování šumu v obraze pomocí metod hlubokého učení / Removing noise in images using deep learning methodsStrejček, Jakub January 2021 (has links)
This thesis focuses on comparing methods of denoising by deep learning and their implementation. In the last few years, it has become clear that it is not necessary to have paired data, as for noisy and clean pictures, to train convolution neural networks but it is sufficient to have only noisy pictures for denoising in particular cases. By using methods described in this thesis it is possible to effectively remove i.e. additive Gaussian noise and what more, it is possible to achieve better results than by using statistic methods, which are being used for denoising these days.
|
144 |
Waveletová analýza a zvýrazňování MR tomografických a ultrazvukových obrazů / Wavelet analysis and enhancement of MR tomography and ultrasound imagesMatoušek, Luděk January 2008 (has links)
Tomographic MR (Magnetic Resonance) and sonographic biosignal processing are important non-invasive diagnostic methods used in a medicine. A noise added into processed data by an amplifier of tomograph receiving part and by circuits of sonograph is resulting in a body organ diagnosis degradation. Image data are stored in a standardized DICOM medical file format. Methods using wavelet analysis for noise suppression in image data have been designed and their comparation with classical methods has been made in this work. The MATLAB was utilized for data processing and data rewriting back to the DICOM format.
|
145 |
Moderní směrové způsoby reprezentace obrazů / Modern methods of directional image representationMucha, Martin January 2013 (has links)
Transformation methods are used to describe the image based on defined shapes, which are called bases or frames. Thanks to these shapes it is possible to transform the image with the help of calculated transformation coefficients and further work with this image. It is possible to image denoising, reconstruct the image, transform it and do other things. There are several types of methods of the image processing. In this field a significiant development could be seen. This study is focused on analysis of characteristics of individual well known methods of transformation such as Fouriers´s or Wavelet´s. For comparison, there are also new chosen methods of transformation described: Ripplet, Curvelet, Surelet, Tetrolet, Contourlet and Shearlet. Functional toolboxes were used for comparison of individual methods and their characteristics. These functional toolboxes were modified for the possibility of limitation of transformation coefficients for their potential use in subsequent reconstruction.
|
146 |
Aplikace řídkých reprezentací dat / Applications of sparse data representationsNavrátilová, Barbora January 2014 (has links)
The goal of this thesis is to demonstrate practical application of sparse data representation in the processing of sparse signals. For solving several example problems - denoising, dequantization, and sparse signal decomposition - convex optimization was used. The solutions were implemented in the Matlab environment. For each of the problems, there are two solutions - one for one-dimensional, and one for two-dimensional signal.
|
147 |
Doplňování chybějících vzorků v audio signálu / Inpainting of Missing Audio Signal SamplesMach, Václav January 2016 (has links)
V oblasti zpracování signálů se v současné době čím dál více využívají tzv. řídké reprezentace signálů, tzn. že daný signál je možné vyjádřit přesně či velmi dobře aproximovat lineární kombinací velmi malého počtu vektorů ze zvoleného reprezentačního systému. Tato práce se zabývá využitím řídkých reprezentací pro rekonstrukci poškozených zvukových záznamů, ať už historických nebo nově vzniklých. Především historické zvukové nahrávky trpí zarušením jako praskání nebo šum. Krátkodobé poškození zvukových nahrávek bylo doposud řešeno interpolačními technikami, zejména pomocí autoregresního modelování. V nedávné době byl představen algoritmus s názvem Audio Inpainting, který řeší doplňování chybějících vzorků ve zvukovém signálu pomocí řídkých reprezentací. Zmíněný algoritmus využívá tzv. hladové algoritmy pro řešení optimalizačních úloh. Cílem této práce je porovnání dosavadních interpolačních metod s technikou Audio Inpaintingu. Navíc, k řešení optimalizačních úloh jsou využívány algoritmy založené na l1-relaxaci, a to jak ve formě analyzujícího, tak i syntetizujícího modelu. Především se jedná o proximální algoritmy. Tyto algoritmy pracují jak s jednotlivými koeficienty samostatně, tak s koeficienty v závislosti na jejich okolí, tzv. strukturovaná řídkost. Strukturovaná řídkost je dále využita taky pro odšumování zvukových nahrávek. Jednotlivé algoritmy jsou v praktické části zhodnoceny z hlediska nastavení parametrů pro optimální poměr rekonstrukce vs. výpočetní čas. Všechny algoritmy popsané v práci jsou na praktických příkladech porovnány pomocí objektivních metod odstupu signálu od šumu (SNR) a PEMO-Q. Na závěr je úspěšnost rekonstrukce poškozených zvukových signálů vyhodnocena.
|
148 |
Odstranění šumu z obrazů kalibračních vzorků získaných elektronovým mikroskopem / Denoising of Images from Electron MicroscopeHolub, Zbyněk January 2017 (has links)
Tato Diplomová práce je zaměřena na odstranění šumu ze snímků získaných pomocí Transmisního elektronového mikroskopu. V práci jsou popsány principy digitalizace výsledných snímků a popis jednotlivých šumových složek, které vznikají při digitalizaci snímků. Tyto nechtěné složky ovlivňují kvalitu výsledného snímku. Proto byly vybrány filtrační metody založené na minimalizaci totální variace, jejichž principy jsou v této práci popsány. Jako referenční filtrační metoda byla vybrána filtrace pomocí Non-local means filtru. Tento filtr byl vybrán, jelikož v dnešní dobře patří mezi nejvíce využívané metody, které mají vysokou účinnost. Pro objektivní hodnocení kvality filtrací byly použity tyto hodnotící kritéria – SNR, PSNR a SSIM. V závěru této práce, jsou všechny získané výsledky zobrazeny a jsou diskutovány účinnosti jednotlivých filtrační metod.
|
149 |
Factorisation du rendu de Monte-Carlo fondée sur les échantillons et le débruitage bayésien / Factorization of Monte Carlo rendering based on samples and Bayesian denoisingBoughida, Malik 23 March 2017 (has links)
Le rendu de Monte-Carlo par lancer de rayons est connu depuis longtemps pour être une classe d’algorithmes de choix lorsqu’il s’agit de générer des images de synthèse photo-réalistes. Toutefois, sa nature fondamentalement aléatoire induit un bruit caractéristique dans les images produites. Dans cette thèse, nous mettons en œuvre des algorithmes fondés sur les échantillons de Monte-Carlo et l’inférence bayésienne pour factoriser le calcul du rendu, par le partage d’information entre pixels voisins ou la mise en cache de données précédemment calculées. Dans le cadre du rendu à temps long, en nous fondant sur une technique récente de débruitage en traitement d’images, appelée Non-local Bayes, nous avons développé un algorithme de débruitage collaboratif par patchs, baptisé Bayesian Collaborative Denoising. Celui-ci est conçu pour être adapté aux spécificités du bruit des rendus de Monte-Carlo et aux données supplémentaires qu’on peut obtenir par des statistiques sur les échantillons. Dans un deuxième temps, pour factoriser les calculs de rendus de Monte-Carlo en temps interactif dans un contexte de scène dynamique, nous proposons un algorithme de rendu complet fondé sur le path tracing, appelé Dynamic Bayesian Caching. Une partition des pixels permet un regroupement intelligent des échantillons. Ils sont alors en nombre suffisant pour pouvoir calculer des statistiques sur eux. Ces statistiques sont comparées avec celles stockées en cache pour déterminer si elles doivent remplacer ou enrichir les données existantes. Finalement un débruitage bayésien, inspiré des travaux de la première partie, est appliqué pour améliorer la qualité de l’image. / Monte Carlo ray tracing is known to be a particularly well-suited class of algorithms for photorealistic rendering. However, its fundamentally random nature breeds noise in the generated images. In this thesis, we develop new algorithms based on Monte Carlo samples and Bayesian inference in order to factorize rendering computations, by sharing information across pixels or by caching previous results. In the context of offline rendering, we build upon a recent denoising technique from the image processing community, called Non-local Bayes, to develop a new patch-based collaborative denoising algorithm, named Bayesian Collaborative Denoising. It is designed to be adapted to the specificities of Monte Carlo noise, and uses the additionnal input data that we can get by gathering per-pixel sample statistics. In a second step, to factorize computations of interactive Monte Carlo rendering, we propose a new algorithm based on path tracing, called Dynamic Bayesian Caching. A clustering of pixels enables a smart grouping of many samples. Hence we can compute meaningful statistics on them. These statistics are compared with the ones that are stored in a cache to decide whether the former should replace or be merged with the latter. Finally, a Bayesian denoising, inspired from the works of the first part, is applied to enhance image quality.
|
150 |
Transfer learning approaches for feature denoising and low-resource speech recognitionBagchi, Deblin 10 September 2020 (has links)
No description available.
|
Page generated in 0.0468 seconds