1 |
Modelling of Grubbs type precatalysts with bidentate hemilabile ligands / Fatima Raymakers.Raymakers, Maria de Fatima Marques January 2012 (has links)
Metathesis is a valuable reaction for the production of new alkenes. In the last 50 years, heterogeneous as well as homogeneous catalysts have been used for this reaction. In the homogeneous category are the very successful catalysts designed by the Grubbs group. The first generation Grubbs precatalyst (Gr1) bearing two phosphine ligands was followed after extensive studies by the more active second generation Grubbs precatalyst (Gr2). In Gr2, one of the phosphine ligands is replaced with an N-heterocyclic carbene. Grubbs type precatalysts bearing pyridynyl-alcoholato chelating ligands are pertinent to this study.
Scheme 1: The synthesis of Grubbs type precatalysts bearing a pyridynyl-alcoholato ligand.
In two previous studies, both supported by computational methods, Grubbs type precatalysts with N^O chelating ligands were synthesised. These investigations were motivated by the fact that chelating ligands bearing different donor atoms can display hemilability. The loosely bound donor atom can de-coordinate to make available a coordination site to an incoming substrate “on demand”, whilst occupying the site otherwise and hence preventing decomposition via open coordination sites. In the first investigation, the incorporation of an O,N-ligand with both R1 and R2 being phenyl groups into the Gr2 precatalyst, resulted in an increase in activity, selectivity and lifetime of the precatalyst in comparison to Gr2 in the metathesis reaction with 1- octene. In the second study, three synthesised complexes were found to be active for the metathesis of 1-octene.
This computational study sought to better understand the structural differences and thermodynamic properties of these Grubbs type precatalysts with bidentate/hemilabile ligands. A large number of structures were constructed in Materials Studio by varying the R groups of the bidentate/hemilabile ligand attached to both the Gr1 and Gr2 catalysts. The majority of structures were Gr1-type complexes. For each ligand selected, a group of structures consisting of closed precatalyst, open precatalyst, and where applicable a precatalyst less PCy3, closed metallacycle, open metallacycle and where applicable a metallacycle less PCy3, was constructed and optimised using DMol3. Bond lengths, bond angles, HOMO and LUMO energies and Hirshveld charges of structures were compared with one another. PES scans were performed on the metallacycles of four groups. The purpose of the PES scans was to ascertain whether these bidentate ligands were hemilabile and to illuminate the preferred reaction mechanism for these types of precatalysts.
The major finding of this study was that the possibility of an associative mechanism cannot be ruled out for some Gr2-type precatalysts with bidentate ligand. For some precatalysts hemilability is energetically expensive and possibly not viable. No evidence of a concerted mechanism was found. The dissociative mechanism was found to be the preferred mechanism for most of the structures that were subjected to PES scans.
The HOMO-LUMO energies of a complex can be used, as a predictive tool, to assess the reactivity and stability of a complex, as well as its preference for substrates. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2013.
|
2 |
Modelling of Grubbs type precatalysts with bidentate hemilabile ligands / Fatima Raymakers.Raymakers, Maria de Fatima Marques January 2012 (has links)
Metathesis is a valuable reaction for the production of new alkenes. In the last 50 years, heterogeneous as well as homogeneous catalysts have been used for this reaction. In the homogeneous category are the very successful catalysts designed by the Grubbs group. The first generation Grubbs precatalyst (Gr1) bearing two phosphine ligands was followed after extensive studies by the more active second generation Grubbs precatalyst (Gr2). In Gr2, one of the phosphine ligands is replaced with an N-heterocyclic carbene. Grubbs type precatalysts bearing pyridynyl-alcoholato chelating ligands are pertinent to this study.
Scheme 1: The synthesis of Grubbs type precatalysts bearing a pyridynyl-alcoholato ligand.
In two previous studies, both supported by computational methods, Grubbs type precatalysts with N^O chelating ligands were synthesised. These investigations were motivated by the fact that chelating ligands bearing different donor atoms can display hemilability. The loosely bound donor atom can de-coordinate to make available a coordination site to an incoming substrate “on demand”, whilst occupying the site otherwise and hence preventing decomposition via open coordination sites. In the first investigation, the incorporation of an O,N-ligand with both R1 and R2 being phenyl groups into the Gr2 precatalyst, resulted in an increase in activity, selectivity and lifetime of the precatalyst in comparison to Gr2 in the metathesis reaction with 1- octene. In the second study, three synthesised complexes were found to be active for the metathesis of 1-octene.
This computational study sought to better understand the structural differences and thermodynamic properties of these Grubbs type precatalysts with bidentate/hemilabile ligands. A large number of structures were constructed in Materials Studio by varying the R groups of the bidentate/hemilabile ligand attached to both the Gr1 and Gr2 catalysts. The majority of structures were Gr1-type complexes. For each ligand selected, a group of structures consisting of closed precatalyst, open precatalyst, and where applicable a precatalyst less PCy3, closed metallacycle, open metallacycle and where applicable a metallacycle less PCy3, was constructed and optimised using DMol3. Bond lengths, bond angles, HOMO and LUMO energies and Hirshveld charges of structures were compared with one another. PES scans were performed on the metallacycles of four groups. The purpose of the PES scans was to ascertain whether these bidentate ligands were hemilabile and to illuminate the preferred reaction mechanism for these types of precatalysts.
The major finding of this study was that the possibility of an associative mechanism cannot be ruled out for some Gr2-type precatalysts with bidentate ligand. For some precatalysts hemilability is energetically expensive and possibly not viable. No evidence of a concerted mechanism was found. The dissociative mechanism was found to be the preferred mechanism for most of the structures that were subjected to PES scans.
The HOMO-LUMO energies of a complex can be used, as a predictive tool, to assess the reactivity and stability of a complex, as well as its preference for substrates. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2013.
|
3 |
Modélisation des propriétés magnétiques et multiferroïques d'oxydes de cuivre / Modelling magnetic and multiferroic properties of copper oxidesLafargue-dit-Hauret, William 28 September 2018 (has links)
Les matériaux multiferroïques, dans lesquels magnétisme et ferroélectricité coexistent, sont un intérêt majeur dans le domaine du stockage de l'information. Un couplage magnétoélectrique robuste, ainsi qu'une polarisation électrique importante, sont les conditions requises à température ambiante pour ces matériaux multifonctionnels. Ce manuscrit rend compte de travaux théoriques visant à principalement caractériser les propriétés magnétiques d'oxydes à majorité cuivrés, susceptibles de répondre à ces exigences. Une première partie vise à une présentation succincte des cuprates, et de concepts fondamentaux concernant le magnétisme et la multiferroïcité. La seconde partie expose les méthodes de modélisation employées. Le chapitre trois donne à un aperçu de techniques expérimentales, tels que le magnétomètre à SQUID ou la RPE. Ensuite, les composés AFeO₃ (A = Sc, In et Bi) et un complexe à base de chrome servent de terrain de jeu, à la mise en place de l'approche calculatoire. La complémentarité entre les méthodes ab initio et les techniques de type Monte-Carlo ou Diagonalisation Exacte, permet une description complète du diagramme de phases magnétiques, alimentée d'une discussion permanente avec l'expérience. Une stratégie similaire est utilisée dans le chapitre suivant, avec l'étude du composé SeCuO₃ et de ses fluctuations quantiques. La dernière partie consiste en la caractérisation de l'effet d'une pression physique (hydrostatique ou uniaxiale) ou chimique sur les propriétés magnétiques des composés CuO, Cu₂OX₂ et CuX₂ (X=F, Cl, Br et I). / Multiferroic materials, in which magnetism and ferroelectricity coexist, have a great interest for memory devices. A robust magnetoelectric coupling, and a high electric polarization, are required at ambient temperature for these multifunctional materials. This thesis reports theoretical works mainly devoted to characterize magnetic properties of cuprates and other oxide compounds, which could develop such skills. A first part aims at briefly discussing cuprates and fundamental concepts of magnetism and multiferroicity. The second chapter is devoted to the theoretical methods used during these works. The third chapter corresponds to a brief overview of experimental techniques, like SQUID magnetometry or EPR. In the fourth chapter, AFeO₃ (A = Sc, In and Bi) multiferroic hexaferrites and a complex based on chromium centers are considered as a "testing ground" to the establishment of the computational approach. Thanks to the complementarity between ab initio methods, using Density Functional Theory, and simulation techniques as Monte-Carlo or Exact Diagonalization procedures, the entire magnetic phase diagram can be fully described. In chapter 5, a similar strategy is considered for studying the SeCuO₃ compound, which exhibits two decoupled magnetic sub-networks and quantum fluctuations. The last chapter of this thesis focuses on the tuning of the magnetic phases diagrams of CuO, Cu₂OX₂ and CuX₂ compounds (X = F, Cl, Br, I) applying physical (hydrostatic and uniaxial) and chemical pressures.
|
Page generated in 0.0765 seconds