• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 12
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diffusive Gradients in Thin Films for Inorganic Arsenic Speciation and Electrothermal Atomic Absorption Spectrometry with a Coupled Microcolumn for Trace Metal Speciation

Panther, Jared Graeme January 2008 (has links)
This thesis is directed towards the development of the diffusive gradients in thin films (DGT) technique for the measurement of total dissolved As, and for As speciation measurements. In addition, a preliminary investigation of a novel laboratory-based method for measuring labile metal species was carried out; this method involved the coupling of a microcolumn of adsorbent with a standard electrothermal atomic absorption spectrometer. An iron-oxide adsorbent was utilized for As measurements by DGT. The diffusion coefficients of inorganic Asv and AsIII> were measured through the polyacrylamide diffusive gel using both a diffusion cell and DGT devices. A variety of factors that may affect the measurement of total As by DGT were investigated. These factors, which included pH, anions, cations, fulvic acid, FeIII-fulvic acid complexes, and colloidal Fe, may affect the adsorption of the As species to the iron-oxide, or may affect the diffusion coefficients of the individual As species. The DGT method was further developed to selectively accumulate the AsIII species in the presence of Asv. This was achieved by the placement of a negatively charged Nafion membrane at the front of the DGT device which slowed the diffusion of the negatively charged Asv species (H₂AsO₄₂ ⁻) considerably, relative to the uncharged AsIII species (H₃AsO₃). The effect that pH, anions, and cations may have on the selective accumulation of AsIII, in the presence of Asv, was investigated. DGT devices without a Nafion membrane and with a Nafion membrane were deployed in natural waters to determine the total inorganic As and AsIII> concentrations, and to evaluate its performance. A preliminary investigation of the coupling of a microcolumn of Chelex-100 resin with a standard electrothermal atomic absorption spectrometer was undertaken to establish its value as a laboratory-based speciation method. This involved the examination of various microcolumn materials to accommodate the Chelex-100 resin, and finding an appropriate buffer that could be used to buffer the Chelex-100 resin without interfering with the ETAAS measurement. Furthermore, factors that may affect the uptake of metal by the Chelex-100 resin, such as concentration of buffer in solution, ionic strength, and conditioning of the Chelex-100 resin, were investigated.
2

Diffusive Gradients in Thin Films for Inorganic Arsenic Speciation and Electrothermal Atomic Absorption Spectrometry with a Coupled Microcolumn for Trace Metal Speciation

Panther, Jared Graeme January 2008 (has links)
This thesis is directed towards the development of the diffusive gradients in thin films (DGT) technique for the measurement of total dissolved As, and for As speciation measurements. In addition, a preliminary investigation of a novel laboratory-based method for measuring labile metal species was carried out; this method involved the coupling of a microcolumn of adsorbent with a standard electrothermal atomic absorption spectrometer. An iron-oxide adsorbent was utilized for As measurements by DGT. The diffusion coefficients of inorganic Asv and AsIII> were measured through the polyacrylamide diffusive gel using both a diffusion cell and DGT devices. A variety of factors that may affect the measurement of total As by DGT were investigated. These factors, which included pH, anions, cations, fulvic acid, FeIII-fulvic acid complexes, and colloidal Fe, may affect the adsorption of the As species to the iron-oxide, or may affect the diffusion coefficients of the individual As species. The DGT method was further developed to selectively accumulate the AsIII species in the presence of Asv. This was achieved by the placement of a negatively charged Nafion membrane at the front of the DGT device which slowed the diffusion of the negatively charged Asv species (H₂AsO₄₂ ⁻) considerably, relative to the uncharged AsIII species (H₃AsO₃). The effect that pH, anions, and cations may have on the selective accumulation of AsIII, in the presence of Asv, was investigated. DGT devices without a Nafion membrane and with a Nafion membrane were deployed in natural waters to determine the total inorganic As and AsIII> concentrations, and to evaluate its performance. A preliminary investigation of the coupling of a microcolumn of Chelex-100 resin with a standard electrothermal atomic absorption spectrometer was undertaken to establish its value as a laboratory-based speciation method. This involved the examination of various microcolumn materials to accommodate the Chelex-100 resin, and finding an appropriate buffer that could be used to buffer the Chelex-100 resin without interfering with the ETAAS measurement. Furthermore, factors that may affect the uptake of metal by the Chelex-100 resin, such as concentration of buffer in solution, ionic strength, and conditioning of the Chelex-100 resin, were investigated.
3

Diffusive Gradients in Thin Film (DGT): a Proposed Method to Find Geochemical Predictors of Sediment Oxygen Demand

Geroux, Jonathon Michael 17 May 2014 (has links)
Sediment Oxygen Demand (SOD) is the fluctuation of dissolved oxygen between the sediment from the overlying water. The method to acquire SOD values is inefficient and troubled by unreliable equipment. Diffusion gradients in thin film (DGT) are proposed as a potential method to collect geochemical proxy measures that can be used as SOD predictors. Field deployment of the DGTs was conducted at two locations to compare recovery and accuracy against ex-situ centrifuge methods. The results indicated DGT can be used as a statistically significant geochemical method. A principle component analysis was used to determine if reduced iron and manganese collected using DGTs clustered with SOD. Results indicated reduced iron and manganese cannot be used to predict SOD. Sulfide measurement by microelectrode from the same matrix of geochemical methods however did cluster with SOD. A stepwise multiple linear regression concluded sulfide measurement by microelectrode is a statistically significant predictor of SOD.
4

Evaluation de la biodisponibilité du cuivre dans des sédiments artificiels par des méthodes biologiques avec la plante aquatique Myriophyllum aquaticum (hydroponie, biotest normalisé et Rhizotest) et géochimiques (DGT) / Bioavailability of copper in contaminated sediments assessed by biological methods with the aquatic plant Myriophyllum aquaticum (hydropony, standardized bioassay and Rhizotest) and a geochemical approach (DGT)

Caillat, Amélie 28 March 2014 (has links)
Les travaux menés durant cette thèse ont visé à évaluer la pertinence de la plante aquatique Myriophyllum aquaticum pour l'étude de la biodisponibilité du cuivre dans des sédiments ainsi que l'intérêt de la technique du gradient de diffusion en couche mince (DGT) comme outil biomimétique de cette plante. Une première expérimentation réalisée avec la plante M.aquaticum exposée selon le protocole du biotest normalisé (sous forme de verticilles) dans des sédiments artificiels dopés en cuivre a montré que ce biotest semble être un outil intéressant pour l'évaluation de la toxicité de sédiments contaminés en cuivre. En outre, aucune corrélation n'a été observée entre les mesures DGT et la bioaccumulation dans la plante M.aquaticum. Ceci est probablement lié aux conditions d'exposition des plantes. En effet, le développement des racines se faisant au cours de l'expérimentation, les processus d'incorporation du métal dans la plante ne sont donc pas constants au cours de l'expérience. Suite à ces résultats nous avons réalisé deux autres séries d'expérimentations (hydroponie et Rhizotest) dans lesquelles, les plantes ont été exposées selon un protocole modifié (plantes ayant déjà développé des racines avant leur exposition dans le sédiment). Ces expérimentations nous ont permis de montrer que la plante M.aquaticum est plutôt sensible au cuivre et qu'elle a une forte capacité à l'accumuler. De plus, les résultats obtenus ont permis de montrer que la technique DGT semble être un bon outil biomimétique de cette plante dans le cas où elle est exposée avec des racines car le prélèvement par la plante est limité par la capacité de la phase solide à réapprovisionner le métal en solution. / The work carried out during this thesis aimed to assess the relevance of the aquatic plant Myriophyllum aquaticum to study the bioavailability of copper in sediments as well as the interest of the technique of diffusion gradient in thin film (DGT) as a biomimetic tool of this plant. A first experiment, performed with the plant M.aquaticum exposed according to the protocol of the standardized bioassay (as whorls) in an artificial sediment spiked with copper, showed that this bioassay appears to be a useful tool for assessing the toxicity of contaminated sediments copper. Furthermore, no correlation was observed between DGT measurements and bioaccumulation in the M.aquaticum plant. This is probably due to the exposure conditions of the plants. In fact, as the root development occurs during the experiment, the process of incorporating the metal into the plant is therefore not constant throughout the experiment.Following these results we conducted two other series of experiments (hydropony and Rhizotest) in which, plants were exposed following a modified protocol (plants having already developed roots before their exposure in the sediment). These experiments showed that the plant M.aquaticum is rather sensitive to copper and has a strong ability to accumulate it. Futhermore, the results have shown that the DGT technique seems to be a good biomimetic tool for this plant when it is exposed by roots because the plant uptake is limited by the capacity of the solid phase to replenish the metal in solution.
5

Laboratory optimization and field demonstration of diffusive gradients in thin films for in-situ mercury measurements of river sediments

Chess, Timothy William 21 December 2010 (has links)
Diffusive gradients in thin film (DGT) technique is applied to determine pore water mercury concentrations in river sediments. DGT devices have been a useful indicator of dissolved metals in aqueous systems, although it is not as well developed for measuring mercury. DGT devices were evaluated for three different ion exchange resins for adsorption of mercury. After a series of laboratory experiments, 3-Mercaptopropyl Functionalized Silica Gel (3M) was chosen as an effective resin layer. Laboratory experiments showed that the resin strongly associated with dissolved Hg²⁺. DGT probes were tested with sediments from the South River (Virginia, USA) in the laboratory and the time dependent deployment verified an uptake of mercury to the probes and established an effective diffusion coefficient for site specific utilization. Multiple piston and sediment probes were deployed in the South River in-situ to determine overlying water Hg concentrations and sediment pore water Hg concentration profiles. The DGT devices were successful in measuring Hg concentrations in-situ. / text
6

Régulation des réactions d’oxydo-réduction d’espèces chimiques (arsenic et chrome) dans les sédiments fluviaux de la Marque : de l’expérimentation à la modélisation / Regulation of redox reactions of chemical species (arsenic and chromium) in sediment of Marque river : from experimentation to modeling

Gorny, Josselin 02 December 2015 (has links)
L’acquisition de connaissances sur le devenir des éléments traces sensibles aux variations redox dans les sols et les sédiments est une composante clé pour améliorer la gestion du stockage des déchets radioactifs par l’Andra (Agence nationale pour la gestion des déchets radioactifs), ainsi que celle des sédiments pollués dans la région Nord-Pas de Calais (NPdC). Pour contribuer à répondre à cette problématique, des sédiments fluviaux ont été choisis comme proxy, notamment en raison de l’existence de gradients redox importants. Des méthodes de spéciation ont été développées : (i) techniques chromatographiques couplées à un ICP-MS (Inductively Coupled Plasma – Mass Spectrometry) pour séparer et quantifier les espèces arséniées [As(III), As(V), DMMAV and MMAAV] et chromées [Cr(III) and Cr(VI)] ; et (ii) déploiement combiné de sondes DGT (Diffusive Gradient in Thin film) contenant des gels chélatants spécifiques à certaines espèces arséniées [As(III) et As total]. Ces méthodes ont ensuite été appliquées au cours d’un suivi saisonnier sur la Marque, rivière péri-urbanisée, où les sédiments sont faiblement contaminés en As et en Cr. Les résultats obtenus montrent que le chrome est uniquement présent sous forme réduite Cr(III), rendant difficile l’évaluation des paramètres forçant les inter-conversions redox entre Cr(III) et Cr(VI). L’arsenic est présent uniquement sous formes inorganiques dans les eaux interstitielles : As(III), As(V) et espèces thioarséniées (non caractérisées). L’évolution saisonnière de la spéciation en phase dissoute de l’arsenic dépend essentiellement de la production en S(-II) dissous par les bactéries sulfato-réductrices. Ces avancées montrent l’attention particulière à porter sur le niveau de production en S(-II) dissous dans les environnements de sub-surface puisque la réduction de d’As(V) en As(III) accroit la mobilité et la toxicité de l’arsenic. / The French national radioactive waste management agency (Andra) and the Nord-Pas de Calais (NPDC) Region aim to better understand the fate of the redox sensitive trace elements in soils and river sediments to ameliorate the management of polluted sediments and of the storage of radioactive wastes. To address this problematic, some river sediments were selected as proxies, as strong redox gradients can be observed. Two methods have been developed to study the speciation of As and Cr: (i) HPIC-ICP-MS (High Performance Ionic Performance – Inductively Coupled Plasma – Mass Spectrometry) coupling in order to separate and quantify As [As(III), As(V), DMMAV and MMAAV] and Cr species [Cr(III) and Cr(VI)], and (ii) DGT probes (Diffusive Gradient in Thin Film) containing specific chelating binding gels to quantify As species [As(III) and total As]. These methods have been implemented to monitor the low contaminated porewaters of the Marque river during 9months. The results demonstrated that chromium is present only under its reduced form Cr(III), which makes difficult to assess the parameters that force redox inter-conversions between Cr(III) and Cr(VI). Arsenic is present only under its inorganic forms: As(III), As(V), and thio-arsenical species. Seasonal changes of As speciation in the dissolved phase depends mainly of S(-II) production by sulfate-reducing bacteria, which makes the amount of dissolved S(-II) an important parameter to follow through time since the As reduction increases its mobility and toxicity.
7

The interaction of benthic oligochaetes, T. tubifex with mercury impacted sediments: an assessment of bioaccumulation and biogeochemistry

Offutt, Alyssa Jane 23 September 2014 (has links)
Mercury is a pervasive environmental contaminant which is globally distributed in freshwater ecosystems. In order to assess the risk that mercury and methylmercury pose to public health through consumption and trophic level transfer, it is first necessary to understand the interactions and uptake that occurs between benthic organisms and mercury impacted sediments. Delineation of these interactions currently rely on correlating measurements of bulk sediment concentrations with bioaccumulation of either total mercury or methylmercury. However, it has been proposed that porewater concentrations, rather than sediment concentrations, should be used to predict uptake and bioavailability. Diffusive gradient in thin films (DGTs) have been proposed as a viable technique for porewater measurements to assess the bioavailable fractions of mercury. DGTs were compared to traditional bulk solid sampling to assess their capabilities for the prediction of total and methylmercury bioaccumulation in benthic oligochaetes, T. tubifex. DGTs performed similarly to the bulk solids sampling approach in respect to their correlation with mercury bioaccumulation in the sediment matrix studied. Bioturbation was shown to impact redox profiles in the sediment which led to a decrease in porewater methylmercury concentrations in the uppermost surficial sediment depths. These results indicate that monitoring tools such as DGTs are necessary to better understand the fate of mercury at field scale contaminated sites. / text
8

Evaluating phosphorus availability in soils receiving organic amendment application using the Diffusive Gradients in Thin-films (DGT) technique

Kane, David January 2013 (has links)
Phosphorus is a resource in finite supply. Use of organic amendments in agriculture can be a sustainable alternative to inorganic P, provided it can meet crop requirements. However a lack of consistent knowledge of plant P availability following application of organic amendments, limits its potential. Studies suggest chemical extraction procedures, may not reflect plant available P. The Diffusive Gradients in Thin-films (DGT) technique is based on natural diffusion of P via a hydrogel and sorption to a ferrihydrite binding layer; which should accurately represent soil P (CDGT) in a plant available form. The aim of this research was to evaluate changes in soil P availability, following the addition of organic amendments, cattle farmyard manure (FYM), green waste compost (GW), cattle slurry (SLRY) and superphosphate (SP) using Olsen P and DGT. The research included incubation, and glasshouse studies, using ryegrass (Lolium perenne L.). Soils with a history of application of the aforementioned organic amendments were used (Gleadthorpe), as well as a soil deficient in P (Kincraigie). The hypotheses were as follows H1 A build-up of P available by diffusive supply, from historic treatment additions and subsequent availability from fresh treatment additions will be demonstrated by DGT. H2 Historical treatment additions are more important at determining yield and P uptake than fresh additions. H3 DGT can detect changes in P available by diffusive supply following addition of different treatments and subsequently following lysis of microbial cells on a soil deficient in P. H4 DGT will provide a more accurate indication of plant P availability than organic amendments in a soil deficient in P. H5 P measurements using DGT will be lower from organic amendments than superphosphate.H6 DIFS simulations of soil kinetic parameters will provide additional information about how treatments influence P resupply from solid phase to solution following DGT deployment. Cont/d.
9

Mesures de flux de cadmium dans un sol contaminé par la méthode du DGT

Rachou, Julien January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
10

ARSENIC SPECIATION AND THE CONTROLS ON ITS RELEASE IN CONTAMINATED SEDIMENTS AND CORRESPONDING TOXICOLOGICAL EFFECTS AT GIANT MINE, NWT

Nash, TYLER 01 May 2014 (has links)
Arsenic (As) contamination presents an ecosystem and human health risk at Giant Mine, a historic gold mine near Yellowknife, NWT currently undergoing the final stages of assessment for remediation. Arsenic concentration is elevated in sediments at Giant Mine due to contamination from several forms of mine waste including flotation tailings, roaster calcine and impoundment spills. The Giant Mine Remediation Project has stated aims to remediate the surface of the site, including Baker Creek which runs through the property, to a condition that is a productive environmental habitat and spawning ground. Environmental scanning electron microscope (ESEM) and synchrotron-based micro- X-ray Absorption Near Edge Spectroscopy (µXANES), micro-X-ray fluorescence (μXRF) and micro-X-ray diffraction (μXRD) techniques were employed to characterize the As-host phases and determine the solid-phase speciation of As in mine waste and sediments. Arsenopyrite, Fe-oxides, Fe-root plaque, and As_2 O_3 were the major phases identified. Sediment toxicity was measured using 10-day Chironomus dilutes and 21-day Pimephales promelas exposure tests. The toxicity tests found responses ranging of from 100% mortality at the most contaminated site to no statistical difference to the control groups in the least As contaminated site. Toxicity test chamber conditions were directly monitored with dialysis probes (mini-peepers) and Diffusive Gradients in Thin Films (DGTs). DGT and mini-peeper deployment in the test beakers allowed for direct correlation of their measurements to trace metal uptake and bioaccumulation during the toxicity tests. Linear regression and ANOVA statistics were used to correlate, when possible, As tissue concentrations in Chironomus dilutes and Pimephales promelas to DGT, mini-peeper and surface water concentration measurements. Statistical analysis was also conducted for Co, Cr, Cu, Ni, Pb, Zn, and Sb though these other metal/metalloids were not always suitable for analysis due to constraints caused by detection limits. It was found that DGT As was statistically correlated (r2=0.836 and p<0.0005) to uptake in Pimephales promelas but that total element concentrations were also statistically relevant and slightly better at predicting uptake (r2=0.873 and p<0.0005). Mini-peepers could not be analyzed statistically due to challenges in their use within some highly vegetated sediment samples. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2014-05-01 11:47:59.482

Page generated in 0.0244 seconds