• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'identification des entités nommées en arabe en vue de leur extraction et classification automatiques : la construction d’un système à base de règles syntactico-sémantique / Identification of arabic named entities with a view to their automatique extraction an classification : a syntactico-semantic rule based system

Asbayou, Omar 01 December 2016 (has links)
Cette thèse explique et présente notre démarche de la réalisation d’un système à base de règles de reconnaissance et de classification automatique des EN en arabe. C’est un travail qui implique deux disciplines : la linguistique et l’informatique. L’outil informatique et les règles la linguistiques s’accouplent pour donner naissance à une nouvelle discipline ; celle de « traitement automatique des langues », qui opère sur des niveaux différents (morphosyntaxique, syntaxique, sémantique, syntactico-sémantique etc.). Nous avons donc, dans ce qui nous concerne, mis en œuvre des informations et règles linguistiques nécessaires au service du logiciel informatique, qui doit être en mesure de les appliquer, pour extraire et classifier, par des annotations syntaxiques et/ou sémantiques, les différentes classes d’entités nommées.Ce travail de thèse s’inscrit donc dans un cadre général de traitement automatique des langues, mais plus particulièrement dans la continuité des travaux réalisés au niveau de l’analyse morphosyntaxique par la conception et la réalisation des bases des données lexicales SAMIA et ensuite DIINAR avec l’ensemble de résultats de recherches qui en découlent. C’est une tâche qui vise à l’enrichissement lexical par des entités nommées simples et complexes, et qui veut établir la transition de l’analyse morphosyntaxique vers l’analyse syntaxique, et syntatico-sémantique dans une visée plus générale de l’analyse du contenu textuel. Pour comprendre de quoi il s’agit, il nous était important de commencer par la définition de l’entité nommée. Et pour mener à bien notre démarche, nous avons distingué entre deux types principaux : pur nom propre et EN descriptive. Nous avons aussi établi une classification référentielle en se basant sur diverses classes et sous-classes qui constituent la référence de nos annotations sémantiques. Cependant, nous avons dû faire face à deux difficultés majeures : l’ambiguïté lexicale et les frontières des entités nommées complexes. Notre système adopte une approche à base de règles syntactico-sémantiques. Il est constitué, après le Niveau 0 d’analyse morphosyntaxique, de cinq niveaux de construction de patrons syntaxiques et syntactico-sémantiques basés sur les informations linguistique nécessaires (morphosyntaxiques, syntaxiques, sémantique, et syntactico-sémantique). Ce travail, après évaluation en utilisant deux corpus, a abouti à de très bons résultats en précision, en rappel et en F–mesure. Les résultats de notre système ont un apport intéressant dans différents application du traitement automatique des langues notamment les deux tâches de recherche et d’extraction d’informations. En effet, on les a concrètement exploités dans les deux applications (recherche et extraction d’informations). En plus de cette expérience unique, nous envisageons par la suite étendre notre système à l’extraction et la classification des phrases dans lesquelles, les entités classifiées, principalement les entités nommées et les verbes, jouent respectivement le rôle d’arguments et de prédicats. Un deuxième objectif consiste à l’enrichissement des différents types de ressources lexicales à l’instar des ontologies. / This thesis explains and presents our approach of rule-based system of arabic named entity recognition and classification. This work involves two disciplines : linguistics and computer science. Computer tools and linguistic rules are merged to give birth to a new discipline : Natural Languge Processsing, which operates in different levels (morphosyntactic, syntactic, semantic, syntactico-semantic…). So, in our particular case, we have put the necessary linguistic information and rules to software sevice. This later should be able to apply and implement them in order to recognise and classify, by syntactic and semantic annotations, the different named entity classes.This work of thesis is incorporated within the general domain of natural language processing, but it particularly falls within the scope of the continuity of the accomplished work in terms of morphosyntactic analysis and the realisation of lexical data bases of SAMIA and then DIINAR as well as the accompanying scientific recearch. This task aimes at lexical enrichement with simple and complex named entities and at establishing the transition from the morphological analysis into syntactic and syntactico-semantic analysis. The ultimate objective is text analysis. To understand what it is about, it was important to start with named entity definition. To carry out this task, we distinguished between two main named entity types : pur proper name and descriptive named entities. We have also established a referential classification on the basis of different classes and sub-classes which constitue the reference for our semantic annotations. Nevertheless, we are confronted with two major difficulties : lexical ambiguity and the frontiers of complex named entities. Our system adoptes a syntactico-semantic rule-based approach. After Level 0 of morpho-syntactic analysis, the system is made up of five levels of syntactic and syntactico-semantic patterns based on tne necessary linguisic information (i.e. morphosyntactic, syntactic, semantic and syntactico-semantic information).This work has obtained very good results in termes of precision, recall and F-measure. The output of our system has an interesting contribution in different applications of the natural language processing especially in both tasks of information retrieval and information extraction. In fact, we have concretely exploited our system output in both applications (information retrieval and information extraction). In addition to this unique experience, we envisage in the future work to extend our system into the sentence extraction and classification, in which classified entities, mainly named entities and verbs, play respectively the role of arguments and predicates. The second objective consists in the enrichment of different types of lexical resources such as ontologies.

Page generated in 0.0205 seconds