• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 18
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 19
  • 14
  • 14
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Development of the Quantum Lattice Boltzmann method for simulation of quantum electrodynamics with applications to graphene

Lapitski, Denis January 2014 (has links)
We investigate the simulations of the the Schrödinger equation using the onedimensional quantum lattice Boltzmann (QLB) scheme and the irregular behaviour of solution. We isolate error due to approximation of the Schrödinger solution with the non-relativistic limit of the Dirac equation and numerical error in solving the Dirac equation. Detailed analysis of the original scheme showed it to be first order accurate. By discretizing the Dirac equation consistently on both sides we derive a second order accurate QLB scheme with the same evolution algorithm as the original and requiring only a one-time unitary transformation of the initial conditions and final output. We show that initializing the scheme in a way that is consistent with the non-relativistic limit supresses the oscillations around the Schrödinger solution. However, we find the QLB scheme better suited to simulation of relativistic quantum systems governed by the Dirac equation and apply it to the Klein paradox. We reproduce the quantum tunnelling results of previous research and show second order convergence to the theoretical wave packet transmission probability. After identifying and correcting the error in the multidimensional extension of the original QLB scheme that produced asymmetric solutions, we expand our second order QLB scheme to multiple dimensions. Next we use the QLB scheme to simulate Klein tunnelling of massless charge carriers in graphene, compare with theoretical solutions and study the dependence of charge transmission on the incidence angle, wave packet and potential barrier shape. To do this we derive a representation of the Dirac-like equation governing charge carriers in graphene for the one-dimensional QLB scheme, and derive a two-dimensional second order graphene QLB scheme for more accurate simulation of wave packets. We demonstrate charge confinement in a graphene device using a configuration of multiple smooth potential barriers, thereby achieving a high ratio of on/off current with potential application in graphene field effect transistors for logic devices. To allow simulation in magnetic or pseudo-magnetic fields created by deformation of graphene, we expand the scheme to include vector potentials. In addition, we derive QLB schemes for bilayer graphene and the non-linear Dirac equation governing Bose-Einstein condensates in hexagonal optical lattices.
42

Efeitos clássicos e quânticos em teorias não comutativas / Quantum and classical effects in noncomutative theories

Freitas, Tiago Carlos Adorno de 14 January 2013 (has links)
A presente tese de Doutorado refere-se a problemas em teoria de campos e mecânica quântica no espaço não comutativo (NC). Abordamos alguns sistemas físicos bem estudados em física teórica, como a teoria de Maxwell na presença de fontes externas, equação de Pauli, equação de Dirac em campos externos e o espectro do átomo de hidrogênio relativístico. Como um primeiro problema estudamos a teoria de calibre U(1)* e extendemos o mapa de Seiberg-Witten para incluir uma corrente externa e formulamos equações clássicas para os campos no espaço não comutativo. Soluções no vácuo e em um campo magnético externo para uma carga estática de tamanho finito a foram determinadas. Encontramos que uma carga estática além de ser um monopolo elétrico comporta-se como um dipolo magnético e um campo magnético externo modifica o campo de Coulomb a longas distâncias bem como alguns fatores de forma eletromagnéticos, comportamentos inerentes a consideração de uma geometria NC. Nesta direção analisamos a ambiguidade no mapa de Seiberg-Witten e mostramos que, no mínimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se adicionar uma solução homogênea à condição de conservação da corrente. Demandando que o momento magnético NC seja menor que o erro existente na medida do momento magnético de léptons, obtemos uma estimativa superior para o parâmetro e seu comprimento fundamental associado l. Estudamos os níveis de energia do átomo de hidrogênio relativístico no formalismo da equação de Dirac no espaço NC para o campo de Coulomb. Demonstramos que no caso relativístico a não comutatividade quebra totalmente a degenerescência dos níveis 2S1/2; 2P1/2 e 2P3/2, abrindo novos canais de transição permitidos. Por fim construímos uma equação de onda não relativística para partículas de spin 1/2 através do limite não relativístico da equação de Dirac no espaço NC. Apresentamos um modelo pseudoclássico (à-la Berezin-Marinov) cuja quantização coincide com as equações de onda não relativísticas. Através da interação entre um spin não-relativístico e o campo magnético, através da equação de Pauli no espaço NC, construímos uma generalização para o modelo de Heisenberg para dois spins acoplados no espaço NC. Em tal modelo calculamos a amplitude de probabilidade de transição entre dois estados ortogonais do tipo EPR (Einstein-Podolsky-Rosen) submetidos em um campo magnético oscilatório e mostramos que, algumas de tais transições, que são proibidas no espaço comutativo são possíveis devido a não comutatividade do espaço. / The present PhD thesis refers to problems in field theory and quantum mechanics in noncommutative (NC) space. We study some well known physical systems in theoretical physics, such as the Maxwell theory in the presence of external sources, the Pauli equation, the Dirac equation with external fields and the relativistic Hydrogen atom. First we study the U(1)* gauge theory and extend the Seiberg-Witten map to include an external current and formulate classical field equations in NC space. Solutions in the vacuum and in an external magnetic field for a static charge of finite size a is determined. We find that a static charge in NC space, besides being an electric monopole, behaves as a magnetic dipole and the external magnetic field modifies the Coulomb law at large distances, as well as some electromagnetic form factors. In this direction we analyse the arbitrariness in the Seiberg-Witten map and show that, at least to the order studied here, this is equivalent to adding a homogeneous solution to the charge conservation condition. Demanding that the NC magnetic moment be less than the existing error in the measurement of leptons magnetic moment we obtain an upper bound for the NC parameter and its associated fundamental length l. In addition we consider the energy levels of a hydrogen-like atom in the framework of a -modified, due to space noncommutativity, Dirac equation with a Coulomb field. It is shown that the noncommutativity completely breaks the degeneracy of the 2S1/2; 2P1/2 and 2P3/2 levels, allowing for new transition channels. At last, but not least, we construct a nonrelativistic wave equation for spin 1/2 particles through the nonrelativistic limit of the NC Dirac equation. We present a pseudoclassical model (à-la Berezin-Marinov) whose quantization coincides with the nonrelativistic wave equations. By extracting the interaction between a nonrelativistic spin and the magnetic field, from the obtained Pauli equation in NC space, we construct a generalization of the Heisenberg model for two coupled spins in NC space. In such model, it is calculated the transition probability amplitude between two orthogonal EPR (Einstein-Podolsky-Rosen) states submitted in the presence of an oscilatory magnetic field and we shown that some of such transitions, which are forbidden in NC space are possible due to space noncommutativity.
43

Anomalias e números fermiônicos induzidos em grafeno com deformações / Anomalies and induced fermion number in strain-graphene

Vásquez, Angel Eduardo Obispo [UNESP] 17 February 2016 (has links)
Submitted by ANGEL EDUARDO OBISPO VASQUEZ null (signaux_fonce@hotmail.com) on 2016-03-10T21:30:19Z No. of bitstreams: 1 Tese final.pdf: 3148732 bytes, checksum: dc9e633bbfd74365e11b41baeb143eff (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-03-14T14:09:25Z (GMT) No. of bitstreams: 1 vasquez_aeo_dr_guara.pdf: 3148732 bytes, checksum: dc9e633bbfd74365e11b41baeb143eff (MD5) / Made available in DSpace on 2016-03-14T14:09:25Z (GMT). No. of bitstreams: 1 vasquez_aeo_dr_guara.pdf: 3148732 bytes, checksum: dc9e633bbfd74365e11b41baeb143eff (MD5) Previous issue date: 2016-02-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Desde aproximadamente o nal da década de 1970 efeitos quânticos e topológicos em sistemas da matéria condensada que são mostrados ocorrer a nível teórico em teoria quântica de campos têm atraído a atenção de físicos. Neste contexto, o grafeno representa uma das maiores vertentes de pesquisa dentro dos estudos das ciência dos materiais. O fato das excitações eletrônicas de baixa energia serem descritas por fermions de Dirac, estimulou uma relação frutífera entre a matéria condensada e a física de altas energias, fornecendo cenários propícios para o aparecimento de novos e exóticos fenômenos que são de grande interesse na física da matéria condensada atual. A presente tese aborda particularmente dois tópicos fundamentais da teoria quântica de campos: As Anomalias quânticas e o Fracionamento do número fermiônico. Especí camente, estamos interessados na realização de ambos fenômenos em redes de grafeno com deformações. No grafeno, um potencial vector de gauge axial surge como produto de deformações locais da rede, na forma de defeitos topológicos ou corrugações suaves. Analisaremos a in uência desses campos pseudomagnéticos nos estados eletrônicos para uma partícula, quando interagem com um campo magnético externo, considerando diferentes con gurações para esses campos. Estudamos o papel que desempenham os estados de modo-zero na indução de um número fermiônico fracionário e sua conexão com a anomalia de paridade. / Since approximately the late 1970s, topological quantum effects in condensed matter systems that are shown the occur at a theoretical level in quantum field theory have attracted the attention of physicists. In this context, the graphene is one of the major lines of research within the studies of materials science. The fact that the electronic excitations of low energy are described by Dirac fermions, stimulating a fruitful relationship between condensed matter and high energy physics, providing favorable scenarios for the arising of new and exotic phenomena which are of great interest in the current condensedmatter physics. This thesis addresses particularly two key topics of quantum field theory: Quantum anomalies and the fermion number fractionalization. Specifically, we are interested in performing both phenomena in deformed graphene lattice. In graphene, an axial vector potential arises as the result of local deformations on the lattice, as topological defects or soft corrugations. We analyze the ináuence of these pseudo-magnetic fields on the one-particle states, when interacting with a background magnetic field, for differents conÖguration for the fields. We study the role played by zero-mode states in fractional fermion number induced and its connection with the anomaly of parity.
44

Nanoestruturas de grafeno e o problema do confinamento de partículas de Dirac na descrição do contínuo

Souza, José Fernando Oliveira de 08 August 2014 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-15T13:04:40Z No. of bitstreams: 1 arquivototal.pdf: 6077553 bytes, checksum: 3cad3094833d2fdc458897bedccb4917 (MD5) / Made available in DSpace on 2016-03-15T13:04:40Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 6077553 bytes, checksum: 3cad3094833d2fdc458897bedccb4917 (MD5) Previous issue date: 2014-08-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we investigate in parallel physical and mathematical aspects inherent to the problem of confinement of massless Dirac fermions in graphene nanostructures. In a low energy approach, we propose models to describe confining systems in graphene and study how the choice of boundary conditions of the problem - or, equivalently, of domains of the Dirac operator - affects the physical properties of such systems. In this scenario, we concentrate essentially on the study of the physical behavior of graphene nanorings and nanoribbons in response to aspects such as topology, edge and interface geometry and interactions with external fields. At the same time, a rigorous investigation concerning formal aspects of the problem and the way that they manifest themselves physically is also performed. In light of the theory of linear operators on Hilbert spaces, we analyze the role played by the notion of self-adjointness in the problem and establish sets of boundary conditions physically acceptable in graphene, which mathematically corresponds to the definition of self-adjoint extensions of the Dirac Hamiltonian from the continuum description. Sets proposed in the treatment of some studied configurations are approached in this context. In addition, we present a particular study in which we examine the influence of topological defects on the physics of massive fermions in graphene in the presence of Coulomb and uniform magnetic fields. / Neste trabalho, investigamos paralelamente os aspectos físicos e matemáticos inerentes ao problema do confinamento de férmions de Dirac sem massa em nanoestruturas de grafeno. Em uma abordagem no limite de baixas energias, propomos modelos para descrever sistemas confinantes no âmbito da física do grafeno e estudamos de que modo a escolha das condições de contorno do problema - ou, equivalentemente, dos domínios do operador de Dirac - exercem influência sobre as propriedades físicas de tais sistemas. Neste cenário, concentramo-nos essencialmente no estudo do comportamento físico de nanoanéis e nanofitas de grafeno em resposta a aspectos como topologia, geometria de borda e interface e interações com campos externos. Ao mesmo tempo, também é realizada uma rigorosa investigação acerca dos aspectos formais do problema e do modo como eles se refletem fisicamente. À luz da teoria dos operadores lineares em espaços de Hilbert, analisamos o papel desempenhado pela noção de self-adjointness na modelagem do problema e estabelecemos conjuntos de condições de contorno fisicamente aceitáveis relativamente ao grafeno, o que corresponde matematicamente à definição de extensões auto-adjuntas do Hamiltoniano de Dirac da descrição do contínuo. Conjuntos propostos no tratamento de algumas das configurações estudadas são abordados neste contexto. Além disso, apresentamos um estudo à parte em que examinamos a influência de defeitos topológicos na física de férmions com massa no grafeno na presença de interações de Coulomb e de campos magnéticos uniformes.
45

Efeitos clássicos e quânticos em teorias não comutativas / Quantum and classical effects in noncomutative theories

Tiago Carlos Adorno de Freitas 14 January 2013 (has links)
A presente tese de Doutorado refere-se a problemas em teoria de campos e mecânica quântica no espaço não comutativo (NC). Abordamos alguns sistemas físicos bem estudados em física teórica, como a teoria de Maxwell na presença de fontes externas, equação de Pauli, equação de Dirac em campos externos e o espectro do átomo de hidrogênio relativístico. Como um primeiro problema estudamos a teoria de calibre U(1)* e extendemos o mapa de Seiberg-Witten para incluir uma corrente externa e formulamos equações clássicas para os campos no espaço não comutativo. Soluções no vácuo e em um campo magnético externo para uma carga estática de tamanho finito a foram determinadas. Encontramos que uma carga estática além de ser um monopolo elétrico comporta-se como um dipolo magnético e um campo magnético externo modifica o campo de Coulomb a longas distâncias bem como alguns fatores de forma eletromagnéticos, comportamentos inerentes a consideração de uma geometria NC. Nesta direção analisamos a ambiguidade no mapa de Seiberg-Witten e mostramos que, no mínimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se adicionar uma solução homogênea à condição de conservação da corrente. Demandando que o momento magnético NC seja menor que o erro existente na medida do momento magnético de léptons, obtemos uma estimativa superior para o parâmetro e seu comprimento fundamental associado l. Estudamos os níveis de energia do átomo de hidrogênio relativístico no formalismo da equação de Dirac no espaço NC para o campo de Coulomb. Demonstramos que no caso relativístico a não comutatividade quebra totalmente a degenerescência dos níveis 2S1/2; 2P1/2 e 2P3/2, abrindo novos canais de transição permitidos. Por fim construímos uma equação de onda não relativística para partículas de spin 1/2 através do limite não relativístico da equação de Dirac no espaço NC. Apresentamos um modelo pseudoclássico (à-la Berezin-Marinov) cuja quantização coincide com as equações de onda não relativísticas. Através da interação entre um spin não-relativístico e o campo magnético, através da equação de Pauli no espaço NC, construímos uma generalização para o modelo de Heisenberg para dois spins acoplados no espaço NC. Em tal modelo calculamos a amplitude de probabilidade de transição entre dois estados ortogonais do tipo EPR (Einstein-Podolsky-Rosen) submetidos em um campo magnético oscilatório e mostramos que, algumas de tais transições, que são proibidas no espaço comutativo são possíveis devido a não comutatividade do espaço. / The present PhD thesis refers to problems in field theory and quantum mechanics in noncommutative (NC) space. We study some well known physical systems in theoretical physics, such as the Maxwell theory in the presence of external sources, the Pauli equation, the Dirac equation with external fields and the relativistic Hydrogen atom. First we study the U(1)* gauge theory and extend the Seiberg-Witten map to include an external current and formulate classical field equations in NC space. Solutions in the vacuum and in an external magnetic field for a static charge of finite size a is determined. We find that a static charge in NC space, besides being an electric monopole, behaves as a magnetic dipole and the external magnetic field modifies the Coulomb law at large distances, as well as some electromagnetic form factors. In this direction we analyse the arbitrariness in the Seiberg-Witten map and show that, at least to the order studied here, this is equivalent to adding a homogeneous solution to the charge conservation condition. Demanding that the NC magnetic moment be less than the existing error in the measurement of leptons magnetic moment we obtain an upper bound for the NC parameter and its associated fundamental length l. In addition we consider the energy levels of a hydrogen-like atom in the framework of a -modified, due to space noncommutativity, Dirac equation with a Coulomb field. It is shown that the noncommutativity completely breaks the degeneracy of the 2S1/2; 2P1/2 and 2P3/2 levels, allowing for new transition channels. At last, but not least, we construct a nonrelativistic wave equation for spin 1/2 particles through the nonrelativistic limit of the NC Dirac equation. We present a pseudoclassical model (à-la Berezin-Marinov) whose quantization coincides with the nonrelativistic wave equations. By extracting the interaction between a nonrelativistic spin and the magnetic field, from the obtained Pauli equation in NC space, we construct a generalization of the Heisenberg model for two coupled spins in NC space. In such model, it is calculated the transition probability amplitude between two orthogonal EPR (Einstein-Podolsky-Rosen) states submitted in the presence of an oscilatory magnetic field and we shown that some of such transitions, which are forbidden in NC space are possible due to space noncommutativity.
46

Análise clássica e quântica de sistemas com simetrias locais e suas aplicações

Rizzuti, Bruno Ferreira 29 February 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-26T17:48:21Z No. of bitstreams: 1 brunoferreirarizzuti.pdf: 507162 bytes, checksum: 6ccfc7f9025a41c3c8bc647f63d413ea (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-13T12:04:02Z (GMT) No. of bitstreams: 1 brunoferreirarizzuti.pdf: 507162 bytes, checksum: 6ccfc7f9025a41c3c8bc647f63d413ea (MD5) / Made available in DSpace on 2017-05-13T12:04:02Z (GMT). No. of bitstreams: 1 brunoferreirarizzuti.pdf: 507162 bytes, checksum: 6ccfc7f9025a41c3c8bc647f63d413ea (MD5) Previous issue date: 2012-02-29 / Passados mais de 60 anos da sua formulação inicial, o método de Dirac-Bergmann para hamiltonização de sistemas lagrangianos singulares continua sendo uma ferramenta poderosa para análise e investigação de modelos atuais de física teórica. Como motivação, apresentaremos vários exemplos onde o método é utilizado e o descreveremos em detalhes em uma sequência de passos. O objetivo central deste trabalho será então apresentar uma série de aplicações distintas do método de Dirac, incluindo a busca de simetrias locais para teorias singulares, a construção da proposta de relatividade especial dupla de Magueijo-Smolin, a formulação da mecânica clássica com invariância de reparametrizações e sua quantização e por fim, discutiremos um modelo semiclássico mecânico que, quando quantizado, reproduz a equação de Dirac. / After more than 60 years of its initial development, the Dirac-Bergmann method for hamiltonization of constrained systems is still a powerful tool for analysis and investigation of modern theoretical models. As a motivation, we shall present several models where the method is applied, then we will describe it in details, with a sequence of steps. The main objective of this work is to provide distinct applications of the Dirac method, including the search for local symmetries of singular theories, the construction of the Magueijo-Smolin doubly special relativity proposal, the formulation of classical mechanics with reparametrization invariance and its quantization and finally, we discuss a semiclassical mechanical model that produces the Dirac equation through quantization.
47

Relativistic study of electron correlation effects on polarizabilities, two-photon decay rates, and electronic isotope-shift factors in atoms and ions: ab initio and semi-empirical approaches

Filippin, Livio 01 December 2017 (has links)
The first aim of this thesis is to perform relativistic calculation of atomic and ionic polarizabilities and two-photon decay rates. Hydrogenic systems are treated by the Lagrange-mesh method. The extension to alkali-like systems is realized by means of a semiempirical-core-potential approach combined with the Lagrange-mesh method. The studied systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are defined by a Dirac-Hartree-Fock (DHF) calculation using the GRASP2K package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. Polarizabilities appear in a large number of fields and applications, namely in cold atoms physics, metrology and chemical physics. Two-photon transitions are part of a priori highly unlikely processes and are therefore called forbidden radiative processes. Experimental situations report decays from metastable excited states through these channels. Long lifetimes were measured for highly charged Be-like ions in recent storage-ring experiments, but their interpretation is problematic. The study of the competition between forbidden (one-photon beyond the dipole approximation, or multi-photon) and unexpected (hyperfine-induced or induced by external magnetic fields) radiative processes is all obviously relevant. The second aim of this thesis is to perform relativistic ab initio calculations of electronic isotope-shift (IS) factors by using the multiconfiguration DHF (MCDHF) method implemented in the RIS3/GRASP2K and RATIP program packages. Using the MCDHF method, two different approaches are adopted for the computation of electronic IS factors for a set of transitions between low-lying levels of neutral systems. The first one is based on the estimate of the expectation values of the one- and two-body nuclear recoil Hamiltonian for a given isotope, including relativistic corrections derived by Shabaev, combined with the calculation of the total electron densities at the origin. In the second approach, the relevant electronic factors are extracted from the calculated transition shifts for given triads of isotopes. These electronic quantities together with observed ISs between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Within this computational approach for the estimation of the mass- and field-shift factors, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy, and to estimate theoretical error bars of the IS factors. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
48

Relativistic light-matter interaction

Kjellsson Lindblom, Tor January 2017 (has links)
During the past decades, the development of laser technology has produced pulses with increasingly higher peak intensities. These can now be made such that their strength rivals, and even exceeds, the atomic potential at the typical distance of an electron from the nucleus. To understand the induced dynamics, one can not rely on perturbative methods and must instead try to get as close to the full machinery of quantum mechanics as practically possible. With increasing field strength, many exotic interactions such as magnetic, relativistic and higher order electric effects may start to play a significant role. To keep a problem tractable, only those effects that play a non-negligible role should be accounted for. In order to do this, a clear notion of their relative importance as a function of the pulse properties is needed.  In this thesis I study the interaction between atomic hydrogen and super-intense laser pulses, with the specific aim to contribute to the knowledge of the relative importance of different effects. I solve the time-dependent Schrödinger and Dirac equations, and compare the results to reveal relativistic effects. High order electromagnetic multipole effects are accounted for by including spatial variation in the laser pulse. The interaction is first described using minimal coupling. The spatial part of the pulse is accounted for by a series expansion of the vector potential and convergence with respect to the number of expansion terms is carefully checked. A significantly higher demand on the spatial description is found in the relativistic case, and its origin is explained. As a response to this demanding convergence behavior, an alternative interaction form for the relativistic case has been developed and presented. As a guide mark for relativistic effects, I use the classical concept of quiver velocity, vquiv, which is the peak velocity of a free electron in the polarization direction of a monochromatic electromagnetic plane wave that interacts with the electron. Relativistic effects are expected when vquiv reaches a substantial fraction of the speed of light c, and in this thesis I consider cases up to vquiv=0.19c. For the present cases, relativistic effects are found to emerge around vquiv=0.16c .
49

L'équation de Dirac en physique du solide et en optique non-lineaire / The Dirac equation in solid state physics and non-linear optics

Borrelli, William 10 October 2018 (has links)
Ces dernières années, de nouveaux matériaux bidimensionnels aux propriétés surprenantes ont été découverts, le plus connu étant le graphène. Dans ces matériaux, les électrons du niveau de Fermi ont une masse apparente nulle, et peuvent être décrits par l’équation de Dirac sans masse. Un tel phénomène apparaît dans des situations très générales, pour les matériaux bidimensionnels ayant une structure périodique en « nid d’abeille ». De plus, la prise en compte d’interactions mène à des équations de Dirac non linéaires. Ces équations apparaissent également dans l’étude des paquets d’ondes lumineuses dans certaines fibres optiques. Le but de cette thèse est d’étudier l’existence et la stabilité de solutions stationnaires de ces équations avec termes non linéaires sous-critiques et critiques, et de montrer qu’ils sont la limite de solutions stationnaires de l’équation de Schrödinger non linéaire à potentiel périodique dans certains régimes de paramètres. Du point de vue mathématique, on devra résoudre les équations d’Euler-Lagrange de fonctionnelles d'énergie fortement indéfinies faisant intervenir l’opérateur de Dirac. Il s’agira en particulier d’étudier le cas des non-linéarités avec exposant critique, encore mal comprises pour ce type de fonctionnelle, et qui apparaissent naturellement en optique non linéaire. Les résultats de cette thèse pourraient avoir un impact important en physique, en particulier en physique du solide et optique non linéaire. / Recently, new two-dimensional materials possessing unique properties have been discovered, the most famous being the graphene. In this materials, electrons at the Fermi level behave as massless particles and can be described by the massless Dirac equation. This phenomenon is quite general, and it is a common features of "honeycomb" periodic structures. Moreover, taking into account interaction leads to non-linear Dirac equations, which also appear in the description of light propagation in particular waveguides. The aim of the thesis is to study existence and stability of stationary solutions for those equations with both sub-critical and critical nonlinearities, and to show that they are limit of stationary solutions to the Schroedinger equation with honeycomb potential, for a suitable choice of parameters. This amounts to solving the Euler-Lagrange equation for strongly indefinite energy functionals, involving the Dirac operator. We will deal with critical nonlinearities, which are still poorly understood, and appear naturally in non-linear optics. This results may have an impact on the understanding some solid state or nonlinear optics systems.
50

Higher spin fields on curved spacetimes

Mühlhoff, Rainer 20 October 2017 (has links)
This is a diploma thesis on Buchdahl's equations for the description of massive particles of arbitrary spin s/2. On 4-dimensional, globally hyperbolic Lorentzian spacetime manifolds, existence of advanced and retarded Green's operators is proved, the Cauchy problem for Buchdahl's equations is solved globally and two possible constructions for quantizing Buchdahl fields using CAR algebras in the fashion of [Dimock 1982] are given.

Page generated in 0.0215 seconds