• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental investigations, modelling and control of direct injection gasoline engines

Jones, Stephen T. January 2002 (has links)
No description available.
2

An optical investigation of DISI engine combustion, fuel spray and emissions at cold-start temperatures

Efthymiou, Petros January 2015 (has links)
Particulate number (PN) standards in current and future emissions legislation pose a challenge for designers and calibrators during the warm-up phases of cold direct injection spark ignition (DISI) engines. To achieve catalyst light-off conditions in the shortest time, engine strategies are often employed that inherently use more fuel to attain higher exhaust temperatures. These can lead to the generation of locally fuel-rich regions within the combustion chamber and hence the formation and emission of particulates. To meet these emissions requirements, further understanding of the DISI in-cylinder processes during cold-start are required. This thesis investigates the effect of cooling an optical research engine to temperatures as low as -7°C, one of the legislative test conditions. A high-speed 9 kHz optical investigation of the in-cylinder combustion and fuel spray along with in-cylinder pressure measurements was completed with the engine motored and fired at 1500 rpm during combustion conditions that were essentially homogeneous and stoichiometric. Results showed significant differences between the flame growth structures at various operating temperature conditions with the notable presence of fuel-rich regions, which are understood to be prominent areas of particulate formation. Measured engine performance parameters such as indicated mean effective pressure (IMEP) and mass fraction burned (MFB) times correlated with the observed differences in combustion characteristics and flame growth speed. It was shown that flash boiling of the fuel spray was present in the fully heated engine case and significantly reduced the penetration of the spray plume and the likelihood of piston crown and cylinder liner impingement. The flow and combustion processes of a transient production cold start-up strategy were analysed using high-speed particle image velocimetry (HSPIV). Results highlighted a broad range of flame structures and contrasting flame stoichiometry occurring at different times in the start-up process. Turbulent flow structures were identified that have an effect on the fuel spray development and combustion process as well as providing a path for cold-start emissions reduction. PN and transient hydrocarbon (HC) emissions were measured at cold conditions to further elucidate the effect of operating temperature and correlate emissions data with in-cylinder measurements. A clear link between the quantity and size range of particulate and HC emissions and operating temperature was shown and the precise in-cylinder location of HC emissions, caused by fuel impingement, was inferred from the HC emissions data.
3

Planar laser induced fluorescence imaging and analysis with ethanol blended fuels in a direct injection spark ignition engine

Liu, Quan January 2017 (has links)
The currently reported thesis was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% (E10) and 85% (E85) volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach. Overall, both gasoline-ethanol fuels generally exhibited a higher degree of stratification, albeit at least partly alleviated with elevated rail pressures. Under both warm and cold liner conditions the E10 fuel showed clear evidence of fuel droplets persisting up until ignition. Interestingly, with late injection timing the repeatability of the injection was superior (statistically) with higher ethanol content in the fuel, which may have been associated with the higher charge temperatures aiding control of the evaporation of the main mass of alcohol. The findings were corroborated by undertaking a comprehensive study of the influence of varying fuel type and injection settings on thermodynamic performance and engine-out emissions during firing operation, with additional gas exchange effects also influencing the optimum fuel injection timings.
4

Potential of the Empirical Mode Decomposition to analyze instantaneous flow fields in Direct Injection Spark Ignition engine : Effect of transient regimes / Potentiel de la décomposition modal empirique pour analyser les champs d'écoulement instantanés dans le moteur à allumage commandé par injection direct : Effet des régimes transitoires

Sadeghi, Mehdi 04 December 2017 (has links)
Cette étude introduit une nouvelle approche appelée Bivariate 2D-EMD pour séparer le mouvement organisé à grande échelle, soit la composante basse fréquence de l’écoulement des fluctuations turbulentes, soit la composante haute fréquence dans un champ de vitesse instantané bidimensionnel.Cette séparation nécessite un seul champ de vitesse instantané contrairement aux autres méthodes plus couramment utilisées en mécanique des fluides, comme le POD. La méthode proposée durant cette thèse est tout à fait appropriée à l’analyse des écoulements qui sont intrinsèquement instationnaires et non linéaires comme l'écoulement dans le cylindre lorsque le moteur fonctionne dans des conditions transitoires. Bivariate 2D-EMD est validé à travers différents cas test, sur un écoulement turbulent homogène et isotrope (THI) expérimental, qui a été perturbé par un tourbillon synthétique de type Lamb-Ossen, qui simule le mouvement organisé dans le cylindre. Enfin, Il est appliqué sur un écoulement expérimental obtenu dans un cylindre et les résultats de la séparation d'écoulement sont comparés à ceux basés sur l'analyse POD. L’évolution d’écoulement dans le cylindre pendant le fonctionnement du moteur transitoire, c’est à dire une accélération du régime moteur de 1000 à 2000tr/min en différentes rampes, sont mesurée en utilisant de PIV 2D-2C haute cadence. Les champs de vitesse sont obtenus dans le plan de tumble dans un moteur un moteur GDI mono-cylindre transparent et forment une base de données nécessaire pour valider les résultats de simulation numérique. / This study introduces a new approach called Bivariate 2D-EMD to separate large-scale organizedmotion i.e., flow low frequency component from random turbulent fluctuations i.e., high frequency onein a given in-cylinder instantaneous 2D velocity field. This signal processing method needs only oneinstantaneous velocity field contrary to the other methods commonly used in fluid mechanics, as POD.The proposed method is quite appropriate to analyze the flows intrinsically both unsteady and nonlinearflows as in in-cylinder. The Bivariate 2D-EMD is validated through different test cases, by optimize itand apply it on an experimental homogeneous and isotropic turbulent flow (HIT), perturbed by asynthetic Lamb-Ossen vortex, to simulate the feature of in-cylinder flows. Furthermore, it applies onexperimental in-cylinder flows. The results obtained by EMD and POD analysis are compared. Theevolution of in-cylinder flow during transient engine working mode, i.e., engine speed acceleration from1000 to 2000 rpm with different time periods, was obtained by High speed PIV 2D-2C. The velocityfields are obtained within tumble plane in a transparent mono-cylinder DISI engine and provide a database to validate CFD.
5

Computational Modeling and Analysis of Heavy Fuel Feasibility in Direct Injection Spark Ignition Engine

Moda, Sunil Udaya Simha 18 March 2011 (has links)
No description available.

Page generated in 0.0147 seconds