1 |
Robustness of State-of-the-Art Visual Odometry and SLAM Systems / Robusthet hos moderna Visual Odometry och SLAM systemMannila, Cassandra January 2023 (has links)
Visual(-Inertial) Odometry (VIO) and Simultaneous Localization and Mapping (SLAM) are hot topics in Computer Vision today. These technologies have various applications, including robotics, autonomous driving, and virtual reality. They may also be valuable in studying human behavior and navigation through head-mounted visual systems. A complication to SLAM and VIO systems could potentially be visual degeneration such as motion blur. This thesis attempts to evaluate the robustness to motion blur of two open-source state-of-the-art VIO and SLAM systems, namely Delayed Marginalization Visual-Inertial Odometry (DM-VIO) and ORB-SLAM3. There are no real-world benchmark datasets with varying amounts of motion blur today. Instead, a semi-synthetic dataset was created with a dynamic trajectory-based motion blurring technique on an existing dataset, TUM VI. The systems were evaluated in two sensor configurations, Monocular and Monocular-Inertial. The systems are evaluated using the Root Mean Square (RMS) of the Absolute Trajectory Error (ATE). Based on the findings, the visual input highly influences DM-VIO, and performance decreases substantially as motion blur increases, regardless of the sensor configuration. In the Monocular setup, the performance decline significantly going from centimeter precision to decimeter. The performance is slightly improved using the Monocular-Inertial configuration. ORB-SLAM3 is unaffected by motion blur performing on centimeter precision, and there is no significant difference between the sensor configurations. Nevertheless, a stochastic behavior can be noted in ORB-SLAM3 that can cause some sequences to deviate from this. In total, ORB-SLAM3 outperforms DM-VIO on the all sequences in the semi-synthetic datasets created for this thesis. The code used in this thesis is available at GitHub https://github.com/cmannila along with forked repositories of DM-VIO and ORB-SLAM3 / Visual(-Inertial) Odometry (VIO) och Simultaneous Localization and Mapping (SLAM) är av stort intresse inom datorseende (Computer Vision). Dessa system har en variation av tillämpningar såsom robotik, själv-körande bilar och VR (Virtual Reality). En ytterligare potentiell tillämpning är att integrera SLAM/VIO i huvudmonterade system, såsom glasögon, för att kunna studera beteenden och navigering hos bäraren. En komplikation till SLAM och VIO skulle kunna vara en visuell degration i det visuella systemet såsom rörelseoskärpa. Detta examensarbete försöker utvärdera robustheten mot rörelseoskärpa i två tillgängliga state-of-the-art system, DM-VIO (Delayed Marginalization Visual-Inertial Odometry) och ORB-SLAM3. Idag finns det inga tillgängliga dataset som innehåller specifikt varierande mängder rörelseoskärpa. Således, skapades ett semisyntetiskt dataset baserat på ett redan existerande, vid namn TUM VI. Detta gjordes med en dynamisk rendering av rörelseoskärpa enligt en känd rörelsebana erhållen från datasetet. Med denna teknik kunde olika mängder exponeringstid simuleras. DM-VIO och ORB-SLAM3 utvärderades med två sensor konfigurationer, Monocular (en kamera) och Monokulär-Inertial (en kamera med Inertial Measurement Unit). Det objektiva mått som användes för att jämföra systemen var Root Mean Square av Absolute Trajectory Error i meter. Resultaten i detta arbete visar på att DM-VIO är i hög-grad beroende av den visuella signalen som används, och prestandan minskar avsevärt när rörelseoskärpan ökar, oavsett sensorkonfiguration. När enbart en kamera (Monocular) används minskar prestandan från centimeterprecision till diameter. ORB-SLAM3 påverkas inte av rörelseoskärpa och presterar med centimeterprecision för alla sekvenser. Det kan heller inte påvisas någon signifikant skillnad mellan sensorkonfigurationerna. Trots detta kan ett stokastiskt beteende i ORB-SLAM3 noteras, detta kan ha orsakat vissa sekvenser att bete sig avvikande. I helhet, ORB-SLAM3 överträffar DM-VIO på alla sekvenser i det semisyntetiska datasetet som skapats för detta arbete. Koden som använts i detta arbete finns tillgängligt på GitHub https://github.com/cmannila tillsammans med forkade repository för DM-VIO och ORB-SLAM3.
|
Page generated in 0.0705 seconds