Spelling suggestions: "subject:"DMT 2analysis"" "subject:"DMT 3analysis""
1 |
The Effect of Work of Adhesion on Contact of a Pressurized Blister With a Flat SurfaceWhite, Sally A. 08 May 2001 (has links)
The ability to accurately measure surface and interfacial energies affects our understanding of friction, wear, bonding and adhesion. Although there are accurate ways to measure the surface energies of liquids, the surface energies of solids have been harder to characterize. In order to broaden the knowledge of adhesion of solids, a modification to the constrained blister test is proposed. Most of the previous work on constrained blisters has examined the debonding of the blister from the surface underneath as pressure is applied from below. In this thesis, the contact of the constrained blister with the flat surface above it is considered. In addition, the blister is given specified boundary conditions at its outer radius, which has a fixed value.
Three models of the blister behavior are considered: linear plate, nonlinear plate, and membrane. The contact of the blister with the substrate above it is modeled with no adhesion, the JKR-type of adhesion, and the DMT-type of adhesion. Several substrate heights are considered, along with several values for the work of adhesion in the JKR analysis, and several combinations of force magnitude and gap size in the DMT analysis. The effect of adhesion on the contact radius is investigated. Sometimes the contact radius changes discontinuously as the pressure is increased or decreased. Results from the three models of blister behavior and the different models of adhesion are compared. / Master of Science
|
2 |
The Effect of Adhesion on the Contact of an Elastica with a Rigid SurfaceDalrymple, Amy Janel 09 January 2000 (has links)
The understanding of topics such as friction, wear, lubrication, and adhesive bonds is dependent on the ability to measure surface and interfacial energies. The surface energies of liquids may be measured accurately using a variety of techniques; however, surface energies of solids are much more difficult to accurately measure. In an attempt to develop a method that can be used to measure surface and interfacial energies of solids, this thesis proposes the use of a elastica. The elastica acts as an extremely flexible beam and provides a structure that will permit measurable deformation of the solid by relatively small surface attractions. The ends of the elastica are lifted, bent, and clamped vertically at an equal height and specified distance apart. They are then moved downward, allowing the strip to make contact with a flat, rigid, horizontal surface.
Two adhesion models are investigated. First, a JKR-type analysis, which examines the effect of adhesion forces that exist within the area of contact between the elastica and the rigid surface, is considered. Various values for the work of adhesion are examined. A DMT-type analysis, which assumes that the adhesion forces act in the region just outside of the contact area, is also considered. Results are obtained for linear and constant forces. Various values for the maximum DMT force and the vertical separation between the elastica and the rigid substrate at which the adhesion forces terminate are examined. Results from the two types of analyses are compared. / Master of Science
|
Page generated in 0.0395 seconds