• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction of αβ-TCR+CD3+CD4-CD8-NK1.1- T Cells with Antigen Presenting Cells in Immune Suppression

Gao, Julia 09 January 2014 (has links)
αβ-TCR+CD3+CD4-CD8-NK1.1- double negative (DN) T cells comprise 1-5% of T lymphocytes in mice and humans. Previous studies have demonstrated that DN T cells can suppress auto-, allo- and xeno-immune responses in an antigen-specific fashion. However, the mechanisms by which DN T cells regulate immune responses remain elusive. Whether DN T cells can regulate antigen presenting cells has not been investigated previously. The focus of this thesis is to determine the consequences of DN T cells interaction with antigen presenting cells (APCs) and the underlying mechanisms. In this thesis, using a murine skin transplantation model, we found that donor B cells, but not dendritic cells (DCs), are the major surviving donor APCs in recipients following donor lymphocyte infusion. Infusing donor B, but not non-B, cells resulted in significantly enhanced donor-specific skin allograft survival. Mice that had received donor B cells showed higher expression of activation markers on antigen-specific DN T cells. B cells could present alloantigen to DN T cells and prime DN T cell proliferation in an antigen-specific fashion. Activated DN T cells were not able to down regulate the expression of CD80 or CD86 on LPS-activated B cells, but they could kill activated allogeneic as well as syngeneic B cells via a perforin-dependent pathway in vitro. In addition, DN T cells expressed high levels of CTLA4 and were capable of down regulating CD80 and CD86 expressed on antigen-expressing mature DCs through CTLA4. DN T cells killed both immature and mature allogeneic DCs, as well as antigen-loaded syngeneic DCs, in an antigen-specific manner in vitro and in vivo, mainly through the Fas-FasL pathway. Taken together, the data presented in this thesis demonstrate, for the first time, that DN T cells are potent regulators of APCs and further clarify the mechanisms of DN T cell-mediated immune suppression. These findings provide novel insights for DN T cells to be developed as a potent immune suppression treatment for a variety of diseases.
2

Interaction of αβ-TCR+CD3+CD4-CD8-NK1.1- T Cells with Antigen Presenting Cells in Immune Suppression

Gao, Julia 09 January 2014 (has links)
αβ-TCR+CD3+CD4-CD8-NK1.1- double negative (DN) T cells comprise 1-5% of T lymphocytes in mice and humans. Previous studies have demonstrated that DN T cells can suppress auto-, allo- and xeno-immune responses in an antigen-specific fashion. However, the mechanisms by which DN T cells regulate immune responses remain elusive. Whether DN T cells can regulate antigen presenting cells has not been investigated previously. The focus of this thesis is to determine the consequences of DN T cells interaction with antigen presenting cells (APCs) and the underlying mechanisms. In this thesis, using a murine skin transplantation model, we found that donor B cells, but not dendritic cells (DCs), are the major surviving donor APCs in recipients following donor lymphocyte infusion. Infusing donor B, but not non-B, cells resulted in significantly enhanced donor-specific skin allograft survival. Mice that had received donor B cells showed higher expression of activation markers on antigen-specific DN T cells. B cells could present alloantigen to DN T cells and prime DN T cell proliferation in an antigen-specific fashion. Activated DN T cells were not able to down regulate the expression of CD80 or CD86 on LPS-activated B cells, but they could kill activated allogeneic as well as syngeneic B cells via a perforin-dependent pathway in vitro. In addition, DN T cells expressed high levels of CTLA4 and were capable of down regulating CD80 and CD86 expressed on antigen-expressing mature DCs through CTLA4. DN T cells killed both immature and mature allogeneic DCs, as well as antigen-loaded syngeneic DCs, in an antigen-specific manner in vitro and in vivo, mainly through the Fas-FasL pathway. Taken together, the data presented in this thesis demonstrate, for the first time, that DN T cells are potent regulators of APCs and further clarify the mechanisms of DN T cell-mediated immune suppression. These findings provide novel insights for DN T cells to be developed as a potent immune suppression treatment for a variety of diseases.

Page generated in 0.0457 seconds