• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of DNA polymerase III in DNA repair and mutagenesis in Escherichia coli and Salmonella typhimurium

Slater, Steven Charles January 1994 (has links)
No description available.
2

Development of the Antibiotic Potential of a Unique Family of DNA Polymerase Inhibitors

Tarantino, , Paul M. 24 April 1998 (has links)
The work in the Brown laboratory has two long-range objectives. Both are derived from an interest in the replication of the genome of Gram-positive eubacteria. One objective is to gain a deeper understanding of the structure and function of DNA polymerase III, the unique species of DNA polymerase which is essential for chromosome replication. The second objective, the one from which this thesis is derived, is to determine whether a selective inhibitor of this DNA polymerase can serve as a basis for producing a new generation of clinically useful Gram-positive-selective antimicrobial agents. The polymerase III-specific inhibitor prototypes investigated in this work are members of a family of simple 6-substituted uracils. The following members of this family, TMAU and EMAU, were used as platforms for the manipulation of the N3 atom (arrow), the only ring component which could be substituted without severe reduction of inhibitory activity. The N3 position was substituted with a series of alkyl groups of increasing size. The resulting structure-activity relationships at the level of the polymerase was consistent with the presence of an N3-specific subdomain within the inhibitor binding site which could accommodate a wide variety of substituents. Although specific alkyl substituents at N3 also significantly enhanced the antibacterial potency of TMAU and EMAU, the respective compounds were found to have insufficient aqueous solubility for successful application in in vivo infection. To increase aqueous solubility, the N3 atom of the EMAU platform was substituted with selected hydroxy- and methoxyalkyl groups. The latter agents retained both anti-polymerase and antibacterial activity, and, as expected, they displayed a combination of lipid and aqueous solubility favorable to efficacy in in vivo infection. Two of the agents, N3-hydroxypropyl- and N3-methoxypropyl-EMAU were examined for their ability to protect mice from lethal staphylococcal infection. Both were found to be active in this model. In sum, the results of this work demonstrated, for the first time, that: (1) the eubacterial replication-specific DNA polymerase III is a valid target for antibiotic development, and (2) the N3-substituted 6-anilinouracil platform has strong potential as a basis for novel antibiotics useful against Gram-positive bacterial infection.
3

The Characterization of Staphylococcus Aureus polC: the Structural Gene for DNA Polymerase III

Pacitti, Diane Frances 21 April 1995 (has links)
The major research interest of our laboratory is focused on the replication-specific DNA polymerase III (pol III) family in Gram+ bacteria, and has used Bacillus subtilis (BS) as the primary model enzyme for study. The long range objective of the work of the laboratory is to gain a deeper understanding of the structure and function of Gram+ bacterial DNA polymerase IIIs, a structurally unique class of DNA-dependent DNA polymerase which are uniquely susceptible to inhibition by a specific class of dGTP analogs. The project described in this thesis dissertation deals specifically with the pol III of the Gram+ organism Staphylococcus aureus, and involves the isolation and characterization of DNA pol III from this clinically relevant pathogenic bacterium. A homology-based strategy was devised to clone the structural gene specifying DNA polymerase III of Staphylococcus aureus, SA polC. SA polC was found to contain a 4305-bp open reading frame (ORF) encoding a 162.4 kDa polypeptide, and mapped between Ω1074[Tn551] and recA/ngr on the genome map of S. aureus NCTC 8325. The 1435 codon ORF was engineered into the E. coli expression plasmid pBS(KS) under the control of the lac promoter and its repressor. The translational signals of SA polC were reengineered using expression cassette PCR (ECPCR) to optimize the in vitro expression of SA polC in E. coli. Derepression of E. coli transformants carrying the recombinant vector generated high level expression of active recombinant pol III. The recombinant SA pol III was purified to greater than 98% homogeneity and was shown by N-terminal amino acid analysis to be the bona fide product of the 4305-bp SA polC ORF. The physical and catalytic properties of recombinant SA pol III and its responsiveness to inhibitors of the HPUra type were similar to those of Bacillus subtilis (BS) pol III. Comparative structural analysis of the primary structure of SA pol III and the pol IIIs of B. subtilis and the Gram+ relative Mycoplasma pulmonis indicated strong conservation of essential catalytic domains and a novel zinc-finger motif. Comparison of the primary structures of E. coli pol III and these three Gram+ enzymes suggested a specific evolutionary relationship between the pol IIIs of Gram+ and Gram- bacteria.
4

Structure of eukaryotic DNA polymerase epsilon and lesion bypass capability /

Sabouri, Nasim, January 2008 (has links)
Diss. (sammanfattning) Umeå : Univ., 2008. / Härtill 4 uppsatser.
5

Probing the dNTP Binding Region of <em>Bacillus subtilis</em>: DNA Polymerase III with Site-Directed Inhibitors: A Dissertation

Butler, Michelle Marie 13 March 1992 (has links)
6-(p-Hydroxyphenylhydrazino) uracil (H2-HPUra) is a selective and potent inhibitor of the replication-specific DNA polymerase III (pol III) of Gram+ bacteria such as Bacillus subtilis. Although a pyrimidine, H2-HPUra derives its inhibitory activity from its specific capacity to mimic the purine nucleotide, dGTP. The project described in this thesis dissertation involves the use of H2-HPUra-like inhibitors to probe the structure and function of the pol III active site. It consists of two separate problems which are summarized below. Production of a potent bona fide dGTP form of inhibitor. A method was devised to successfully convert the H2-HPUra inhibitor prototype to a bona fide purine, using N2-benzyl guanine as the basis. Structure-activity relationships of benzyl guanines carrying a variety of substituents on the aryl ring identified N2-(3,4-dichlorobenzyl) guanine (DCBG) as a compound equivalent to H2-HPUra with respect to potency and inhibitor mechanism. DCBdGTP, the 2'-deoxyribonucleoside 5'-triphosphate form of DCBG, was synthesized and characterized with respect to its action on wild-type and mutant forms of pol III. DCBdGTP acted on pol III by the characteristic inhibitor mechanism and formally occupied the dNTP binding site with a fit which permitted its polymerization. The latter experiment identified the site for the binding of the inhibitor's aryl moiety as a distinct site located at a distance of approximately 6-7 Å from the base-paired 2-NH group of a bound dGTP. Attempt to covalently label amino acid residue 1175, a putative participant in inhibitor binding. Azp-12, a point mutation of serine 1175, yields a form of pol III whose inhibitior sensitivity varies specifically as a function of the composition of the para substituent of the inhibitor's aryl ring. On the basis of the latter behavior, residue 1175 was hypothesized to be a residue directly involved in the binding of the inhibitor's aryl moiety. To test this hypothesis, residue 1175 was specifically mutated to either cysteine or lysine, each of which presents a side chain amenable to covalent bond formation with appropriately reactive inhibitor forms. Of the two mutant pol III forms, only the cysteine form (pol III-cys) was catalytically active. The kinetic properties and inhibitor sensitivity profile of pol III-cys identified it as a target suitable for potentially irreversible inhibitor forms containing the following groups in the meta position of the aryl ring: -CH2Br, -CH2C1, and -CH2SH. None of the several inhibitors tested selectively or irreversibly inactivated pol III-cys. Possible bases for the failure of this group of inhibitors and for the redesign of more useful covalently reactive inhibitor forms are considered.
6

Role of yeast DNA polymerase epsilon during DNA replication /

Isoz, Isabelle, January 2008 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2008. / Härtill 4 uppsatser.

Page generated in 0.1566 seconds