Spelling suggestions: "subject:"DNA damage checkpoint""
1 |
Differential DNA Damage Responses in p53 Proficient and Deficient Cells: Cisplatin-Induced Nuclear Import of XPA Is Independent of ATR Checkpoint in p53-Deficient Lung Cancer CellsLi, Zhengke, Musich, Phillip R., Zou, Yue 10 June 2011 (has links)
Nucleotide excision repair (NER) and ataxia telangiectasia mutated (ATM)/ATR (ATM- and RAD3-related) NA damage checkpoints are among the major pathways that affect the chemotherapeutic efficiency of the anticancer rug cisplatin. Xeroderma pigmentosum group A (XPA) protein plays a crucial role in NER including both global enome repair (GG-NER) and transcription-coupled repair (TC-NER) subpathways, and has been a potential target for mproving cisplatin therapeutic effects. We report here that XPA translocates from the cytosol into the nucleus after NA damage induced by UV irradiation and cisplatin, a mimetic of UV damage, in human cells with or without p53 deficiency. However, the damage-induced response of XPA nuclear import was significantly slower in p53-deficient cells than in p53-proficient cells. We also found that while XPA is imported into the nucleus upon cisplatin or UV damage in an ATR-dependent manner in p53-proficient A549 lung cancer cells, the ATR checkpoint pathway has no effect on the XPA nuclear import in p53-deficient H1299 lung cancer cells. Similarly, the XPA nuclear translocation is not regulated by ATM checkpoint or by p38MAPK/MK2 either. Our findings suggest that NER is independent on the major DNA damage checkpoint pathways in H1299 (p53-/-) cells and that DNA damage responses are mechanistically different between p53-proficient and p53-deficient cells. Our results also highlight the possibility of selectively targeting XPA nuclear import as a way to sensitize cisplatin anticancer activity, but targeting ATR/ATM-dependent checkpoints may not be helpful in killing p53-deficient cancer cells.
|
2 |
Étude du rôle de la phosphorylation du complexe Mre11-Rad50-Xrs2 dans le maintien de l'intégrité génomiqueSimoneau, Antoine 11 1900 (has links)
L'ADN de chaque cellule est constamment soumis à des stress pouvant compromettre
son intégrité. Les bris double-brins sont probablement les dommages les plus nocifs pour la
cellule et peuvent être des sources de réarrangements chromosomiques majeurs et mener au
cancer s’ils sont mal réparés. La recombinaison homologue et la jonction d’extrémités non-homologues (JENH) sont deux voies fondamentalement différentes utilisées pour réparer ce
type de dommage. Or, les mécanismes régulant le choix entre ces deux voies pour la
réparation des bris double-brins demeurent nébuleux. Le complexe Mre11-Rad50-Xrs2
(MRX) est le premier acteur à être recruté à ce type de bris où il contribue à la réparation par
recombinaison homologue ou JENH. À l’intersection de ces deux voies, il est donc idéalement
placé pour orienter le choix de réparation. Ce mémoire met en lumière deux systèmes distincts
de phosphorylation du complexe MRX régulant spécifiquement le JENH. L’un dépend de la
progression du cycle cellulaire et inhibe le JENH, tandis que l’autre requiert la présence de
dommages à l’ADN et est nécessaire au JENH. Ensembles, nos résultats suggèrent que le
complexe MRX intègre différents phospho-stimuli pour réguler le choix de la voie de
réparation. / The genome of every cell is constantly subjected to stresses that could compromise its
integrity. DNA double-strand breaks (DSB) are amongst the most damaging events for a cell
and can lead to gross chromosomal rearrangements, cell death and cancer if improperly
repaired. Homologous recombination and non-homologous end joining (NHEJ) are the main
repair pathways responsible for the repair of DSBs. However, the mechanistic basis of both
pathways is fundamentally different and the regulation of the choice between both for the
repair of DSBs remains largely misunderstood. The Mre11-Rad50-Xrs2 (MRX) complex acts
as a DSB first responder and contributes to repair by both homologous recombination and
NHEJ. Being at the crossroads of both DSB repair pathways, the MRX complex is therefore in
a convenient position to influence the repair choice. This thesis unravels two distinct
phosphorylation systems modifying the MRX complex and specifically regulating repair by
NHEJ. The first relies on cell cycle progression and inhibits NHEJ, while the second requires
the presence of DNA damage and is necessary for efficient NHEJ. Together, our results
suggest a model in which the MRX complex would act as an integrator of phospho-stimuli in
order to regulate the DSB repair pathway choice.
|
3 |
Étude du rôle de la phosphorylation du complexe Mre11-Rad50-Xrs2 dans le maintien de l'intégrité génomiqueSimoneau, Antoine 11 1900 (has links)
L'ADN de chaque cellule est constamment soumis à des stress pouvant compromettre
son intégrité. Les bris double-brins sont probablement les dommages les plus nocifs pour la
cellule et peuvent être des sources de réarrangements chromosomiques majeurs et mener au
cancer s’ils sont mal réparés. La recombinaison homologue et la jonction d’extrémités non-homologues (JENH) sont deux voies fondamentalement différentes utilisées pour réparer ce
type de dommage. Or, les mécanismes régulant le choix entre ces deux voies pour la
réparation des bris double-brins demeurent nébuleux. Le complexe Mre11-Rad50-Xrs2
(MRX) est le premier acteur à être recruté à ce type de bris où il contribue à la réparation par
recombinaison homologue ou JENH. À l’intersection de ces deux voies, il est donc idéalement
placé pour orienter le choix de réparation. Ce mémoire met en lumière deux systèmes distincts
de phosphorylation du complexe MRX régulant spécifiquement le JENH. L’un dépend de la
progression du cycle cellulaire et inhibe le JENH, tandis que l’autre requiert la présence de
dommages à l’ADN et est nécessaire au JENH. Ensembles, nos résultats suggèrent que le
complexe MRX intègre différents phospho-stimuli pour réguler le choix de la voie de
réparation. / The genome of every cell is constantly subjected to stresses that could compromise its
integrity. DNA double-strand breaks (DSB) are amongst the most damaging events for a cell
and can lead to gross chromosomal rearrangements, cell death and cancer if improperly
repaired. Homologous recombination and non-homologous end joining (NHEJ) are the main
repair pathways responsible for the repair of DSBs. However, the mechanistic basis of both
pathways is fundamentally different and the regulation of the choice between both for the
repair of DSBs remains largely misunderstood. The Mre11-Rad50-Xrs2 (MRX) complex acts
as a DSB first responder and contributes to repair by both homologous recombination and
NHEJ. Being at the crossroads of both DSB repair pathways, the MRX complex is therefore in
a convenient position to influence the repair choice. This thesis unravels two distinct
phosphorylation systems modifying the MRX complex and specifically regulating repair by
NHEJ. The first relies on cell cycle progression and inhibits NHEJ, while the second requires
the presence of DNA damage and is necessary for efficient NHEJ. Together, our results
suggest a model in which the MRX complex would act as an integrator of phospho-stimuli in
order to regulate the DSB repair pathway choice.
|
Page generated in 0.0482 seconds