1 |
Design, synthesis and evaluation of anthraquinone-oligodeoxynucleotide conjugatesGibson, Victoria January 1998 (has links)
No description available.
|
2 |
Molecular and cellular pharmacology of rationally designed PBD dimersSmellie, Melissa January 1995 (has links)
No description available.
|
3 |
DNA and DNA-Interacting Proteins as Anticancer Drug TargetsPunchihewa, Chandanamalie January 2006 (has links)
DNA is both the oldest and newest of targets for cancer therapy. While it is already being targeted by many anticancer drugs in the clinic, the development of sequence-specific DNA binders has brought it back to the limelight as a valuable anticancer drug target.My studies on DNA interacting agents was initiated with the DNA intercalator campotothecin, and also included topoisomerase I enzyme. I have evaluated the structure of topoisomerase I C-terminal domain that consists of the active site tyrosine. My data indicate that this domain exists in a molten globule conformation with a fluctuating tertiary structure. These fluctuations are suggested to be important in interaction with the topoisomerase I core domain and DNA. I have also evaluated the DNA interactions of the camptothecin analogue homocamptothecin and have determined that homocamptothecin intercalate with DNA in the absence of topoisomerase I, and that such intercalation results in its lactone stabilization. Subsequently, the mechanism of topoisomerase I mediated inhibition of HIF-1 by camptothecin was explored. I have shown that camptothecin stimulate topoisomerase I cleavage complex formation in the HIF-1 binding site, which is suggested to prevent the DNA binding of HIF-1.The second part of this study was focused on understanding the mechanism of action of another DNA binder, XR5944. Designed as a dual topoisomerase inhibitor, XR5944 was subsequently shown to have a different mechanism of action - inhibition of trancription. The NMR structural analysis, in our lab, of the drug-DNA complex showed that XR5944 bis-intercalate with DNA, while binding in the DNA major groove. Driven by these combined interaction modes, XR5944 is shown to inhibit the DNA binding and the subsequent transcriptional activity of specific transcription factors such as estrogen receptors and AP-1, which are overexpressed in certain cancers.Finally, I have analyzed G-quadruplex structures formed by telomeric DNA. The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase. Thus the telomeric DNA G-quadruplex has been considered as an attractive anticancer drug target. Telomeric DNA forms multiple G-quadruplex conformations, and my data reveal the conformations of the major G-quadruplexes formed by human telomeres.
|
4 |
Testování působení chemických látek na viabilitu buněčných linií / The effects of chemicals on cell lines viabilityZemanová, Anita January 2019 (has links)
The subject of this diploma thesis is the influence of selected chemicals on cell lines viability. The theoretical part contains options of cancer treatment by using chemotherapeutics including their mechanism of action and side effects. Additionally, there are described alternative DNA structures with focus on G-quadruplexes and ligands that interact with G-quadruplexes. These compounds are promising drugs in cancer treatment due to their high specificity to G-quadruplexes, which are found in telomeres of chromosomes. G-quadruplex interacting ligands by stabilization of G-quadruplexes can inhibit the enzyme telomerase, which is necessary for telomere lengthening of rapidly dividing cancer cells. Additionally, the possibilities of viability assays are summarized in the theoretical part. The aim of the experimental part was comparing cytotoxic activity between commercially available chemotherapeutics and selected G-quadruplex interacting ligands. Another task was the study of apoptosis and necrosis after the treatment of selected chemicals on cell lines and after the localization of ligands interacting with G-quadruplexes in the cells of the breast cancer cell line. In the experimental part, G-quadruplex interacting ligands have been shown to exhibit similar cytotoxic activity to commercially available chemotherapeutic agents.
|
Page generated in 0.0703 seconds