1 |
Stretching and Deformation of DNA Molecules in a Converging-Diverging Microchannel with Heating EffectTsai, Cheng-feng 23 July 2009 (has links)
In this study, an electrokinetics-induced elongation flow was created inside a gradual converging-diverging microchannel with different temperature (25, 35, 45, 55¢XC). The conformation of DNA molecules, local strain rate, and the relaxation time play important roles in determining the extent of DNA stretching. By using £gPIV/£gLIF measurements, the velocity/temperature distributions in microchannels can be secured. The local strain rate was estimated by £gPIV measurements. We observe the hydrodynamic stretching DNA molecules in elongation flow by confocal laser scanning microscope (CLSM). Through CLSM images analysis, relaxation time of DNA molecules was estimated. Finally, dynamic properties and stretching ratio of DNA molecules stretched by EOF driven at various electric field and temperature ware measured. The thermal effect and the electric field on the conformation were also studied and discussed.
|
2 |
Effect of Shear Stress of Near-Wall on DNA Molecules Stretching in MicrochannelsLin, Cheng-wen 07 September 2011 (has links)
Abstract
This study aims to measure the flow field distribution in a microchannel with different heights adjusted. Two different materials, PDMS and Coverglass, were used to observe the flow velocity distribution change resulting from the difference in Zeta potential. The velocity distribution data were also obtained. In the experiment, 1¡Ñ TBE buffer solution with viscosity of 1 cp was used with the electric field intensity controlled under 5, 7.5 and 10 kV/m, respectively. Micrometer resolution Particle Image Velocimetry (£gPIV) was used to measure partial velocity distribution in order to explore the hydrodynamic stretch effect on DNA molecules when the microchannel, where the solution was placed, was adjusted to different heights. This study also statistically analyzed the stretch length distribution of DNA molecules in the microchannel and calculated the time of DNA molecule deformation and stress relaxation time in order to understand the stretch condition under different heights as well as the stretch and deformation of DNA molecules in microchannels.
|
3 |
Transporte eletr?nico e propriedades termodin?micas de nanobiomol?culasBezerril, Leonardo Mafra 18 December 2009 (has links)
Made available in DSpace on 2015-03-03T15:16:23Z (GMT). No. of bitstreams: 1
LeonardoM.pdf: 1880413 bytes, checksum: c785ee7cbc933eb3ac782dc9ac382e6c (MD5)
Previous issue date: 2009-12-18 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / We use a tight-binding formulation to investigate the transmissivity and the currentvoltage (I_V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare theresults for the genomic DNA sequence with those of arti_cial sequences (the long-range correlated Fibonacci and RudinShapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same _rst neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I_V curves seem to be mostly inuenced by the short-range correlations. We also analyze in this work the electronic and thermal properties along an _-helix sequence obtained from an _3 peptide which has the uni-dimensional sequence (Leu-Glu-Thr- Leu-Ala-Lys-Ala)3. An ab initio quantum chemical calculation procedure is used to obtain the highest occupied molecular orbital (HOMO) as well as their charge transfer integrals, when the _-helix sequence forms two di_erent variants with (the so-called 5Q variant) and without (the 7Q variant) _brous assemblies that can be observed by transmission electron microscopy. The di_erence between the two structures is that the 5Q (7Q) structure have Ala ! Gln substitution at the 5th (7th) position, respectively. We estimate theoretically the density of states as well as the electronic transmission spectra for the peptides using a tight-binding Hamiltonian model together with the Dyson's equation. Besides, we solve the time dependent Schrodinger equation to compute the spread of an initially localized wave-packet. We also compute the localization length in the _nite _-helix segment and the quantum especi_c heat. Keeping in mind that _brous protein can be associated with diseases, the important di_erences observed in the present vi electronic transport studies encourage us to suggest this method as a molecular diagnostic tool / Nesta tese, investigamos a transmissividade e as caracter?sticas de corrente como fun??o da diferen?a de potencial, no contexto da liga??o forte, em seq??ncias de dupla fita do DNA. Com o intuito de investigar a relev?ncia das correla??es subjacentes nas distribui??es dos nucleot?deos, comparamos os resultados de uma seq??ncia gen?mica do DNA com duas seq??ncias artificiais (Fibonacci e Rudin-Shapiro, que apresentam correla??o de longo alcance) e uma seq??ncia aleat?ria, prot?tipo de sistemas de correla??o de curto alcance. A seq??ncia aleat?ria utilizada apresenta a mesma correla??o de pares de primeiros vizinhos que a seq??ncia do DNA humano. Observamos que a caracter?stica de correla??o de longo alcance ? importante para o espectro de transmissividade, apesar das curvas IXV serem mais influenciadas por correla??es de curto alcance.
Neste trabalho, analisamos tamb?m as propriedades t?rmicas e eletr?nicas de uma seq?encia α-h?lice, obtida de um pept?deo α3, o qual apresenta a seguinte seq??ncia unidimensional (Leu-Glu-Thr-Leu-Ala-Lys-Ala)3 (estrutura prim?ria). C?lculos ab initio qu?nticos s?o utilizados para obter as energias dos orbitais moleculares mais altos (HOMO, highest occupied molecular orbital), bem como suas integrais de transfer?ncias de cargas quando a seq??ncia α-h?lice forma uma estrutura fibrosa (variante 5Q) e n?o fibrosa (variante 7Q), as quais podem ser observadas atrav?s de microscopia eletr?nica de transmiss?o. A diferen?a entre as duas estruturas ? que a estrutura 5Q (7Q) apresenta a substitui??o Ala → Gln na 5a (7a) posi??o, respectivamente. N?s estimamos, teoricamente, a densidade de estado bem como o espectro de transmiss?o eletr?nico dos pept?deos, utilizando um Hamiltoniano no formalismo da liga??o-forte juntamente com a equa??o de Dyson. Al?m disso, n?s resolvemos a equa??o de Schr?dinger dependente do tempo para obter o espalhamento de um pacote de onda inicialmente localizado. N?s calculamos tamb?m o comprimento de localiza??o e, por fim, o calor espec?fico qu?ntico. Vale lembrar que a forma??o de prote?nas fibrosas podem estar associadas ? doen?as, de forma que as importantes diferen?as observadas no estudo das propriedades eletr?nicas de transporte nos encorajam a sugerir este m?todo como uma ferramenta de diagn?stico molecular
|
Page generated in 0.0468 seconds