• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods.
2

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods.
3

Electrochemical in situ investigation of thiolate DNA monolayers on gold with fluorescence imaging

Murphy, Jeffrey N. 11 1900 (has links)
DNA-modified surfaces have been widely studied for microarray and biosensor applications, in particular sequence-specific detection of DNA, for which electrochemical and optical signs can be produced. Variations in the organization and surface density of adsorbed DNA are known to affect the sensitivity and reliability of assays performed using such surfaces, however most measurements of such surfaces to date have little to no spatial resolution, limiting the information that can be gathered regarding the heterogeneity of the organization of adsorbed DNA molecules. We have applied in situ epi-fluorescence microscopic imaging in conjunction with electrochemical measurements to fluorescently labelled thiolate DNA, adsorbed on polycrystalline gold electrodes with a mercaptohexanol (MCH) passive layer. Spatially resolved information on the organization of adsorbed DNA on the surface is gathered within an area measuring 520by 730micrometres with a 0.96 micrometre resolution. The technique has enabled us to investigate "hotspots" (regions of anomalously bright fluorescence) and regional variation in fluorescence; since molecular fluorescence is quenched as a function of distance from the metal substrate, potential modulation with consequent DNA reorientation or layer specificity of the adsorption. Furthermore, an alternative means to the conventional preparation of thiolate-DNA / MCH monolayers has been developed. In this new method, a gold substrate passivated with MCH is subsequently immersed in an aqueous solution of 5'hexylthiol modified DNA. Through a ligand exchange process, DNA is immobilized forming a mixed MCH / DNA monolayer. Samples prepared via the new method display fewer hotspots and improved fluorescence switching of the DNA during electromodulation for samples made with single stranded (ss) DNA and with double stranded (ds) DNA. Measurement of the DNA surface concentration using ruthenium (III) hexaammine chloride with cyclic voltammetry for self assembled monolayers (SAMs) prepared via the new method are on the order of 1% of the maximum grafting density obtainable for both ssDNA and dsDNA by conventional methods. / Science, Faculty of / Chemistry, Department of / Graduate
4

Localization of metal ions in DNA

Dinsmore, Michael John 28 April 2008
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-bidi-font-weight:bold'>M-DNA is a novel complex formed between DNA and transition metal ions under alkaline conditions.<span style='mso-spacerun:yes'>  </span>The unique properties of M-DNA were manipulated in order to rationally place metal ions at specific regions within a double-stranded DNA helix.<span style='mso-spacerun:yes'>   </span>Investigations using thermal denaturation profiles and the ethidium fluorescence assay illustrate that the pH at which M-DNA formation occurs is influenced heavily by the DNA sequence and base composition.<span style='mso-spacerun:yes'>  </span>For instance, DNA with a sequence consisting of poly[d(TG)d(CA)] is completely converted to M-DNA at pH 7.9 while DNA consisting entirely of poly[d(AT)] remains in the B-DNA conformation until a pH of 8.6 is reached.<span style='mso-spacerun:yes'>  </span>The pH at which M-DNA formation occurs is further decreased by the incorporation of 4-thiothymine (s<sup>4</sup>T).<span style='mso-spacerun:yes'>  </span>DNA oligomers with a mixed sequence composed of </span>half d(AT) and the other half d(TG)d(CA)<span style='mso-bidi-font-weight: bold'> showed that only 50% of the DNA is able to incorporate Zn<sup>2+</sup> ions at pH 7.9.<span style='mso-spacerun:yes'>  </span>This suggests that only regions corresponding to the tracts of <span class=GramE>d(</span>TG)d(CA) are being transformed.<span style='mso-spacerun:yes'>   </span><o:p></o:p></span></p> <p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-fareast-language:ZH-CN'>Duplex DNA monolayers were self-assembled on gold through <span class=GramE>a</span> Au-S linkage and both B- and M-DNA conformations were studied using X-ray photoelectron spectroscopy (XPS) in order to better elucidate the location of the metal ions.<span style='mso-spacerun:yes'>  </span>The film thickness, density, elemental composition and ratios for samples were analyzed and compared.<span style='mso-spacerun:yes'>  </span>The DNA surface coverage, calculated from both XPS and electrochemical measurements, was <span class=GramE>approximately 1.2 x 10<sup>13 </sup>molecules/cm<sup>2</sup></span><sub> </sub>for B-DNA.<span style='mso-spacerun:yes'>  </span>All samples showed distinct peaks for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked DNA.<span style='mso-spacerun:yes'>  </span></span><span style='mso-bidi-font-weight: bold'>On addition of Zn<sup>2+</sup> to form M-DNA the C 1s, P 2p and S 2p showed only small changes </span><span style='mso-fareast-language:ZH-CN'>while both the N 1s and O 1s spectra changed considerably.<span style='mso-spacerun:yes'>  </span>This result is consistent with Zn<sup>2+</sup> interacting with oxygen on the phosphate backbone as well as replacing the imino protons of thymine (T) and guanine (G) in M-DNA.<span style='mso-spacerun:yes'>   </span>Analysis of the Zn 2p spectra also demonstrated that the concentration of Zn<sup>2+</sup> present under M-DNA conditions is consistent with Zn<sup>2+</sup> binding to both the phosphate backbone as well as replacing the imino protons of T or G in each base pair.<span style='mso-spacerun:yes'>  </span>After the M-DNA monolayer is washed with a buffer containing only Na<sup>+</sup> the Zn<sup>2+</sup> bound to the phosphate backbone is removed while the Zn<sup>2+</sup> bound internally still remains. </span><span style='mso-bidi-font-weight:bold'>Variable angle x-ray photoelectron spectroscopy (VAXPS) was also used to examine monolayers consisting of mixed sequence oligomers.<span style='mso-spacerun:yes'>  </span>Preliminary results suggest that under M-DNA conditions, the zinc to phosphate ratio changes relative to the position of the <span class=GramE>d(</span>TG)d(CA) tract being at the top or bottom of the monolayer.<span style='mso-spacerun:yes'>  </span><span style='mso-spacerun:yes'> </span><o:p></o:p></span></p> <p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-bidi-font-weight:bold'>Electrochemistry was also used to investigate the properties of M-DNA monolayers on gold and examine how the localization of metal ions affects the resistance through the DNA monolayer.<span style='mso-spacerun:yes'>  </span>T</span>he effectiveness of using the IrCl<sub>6</sub><sup>2-/3- </sup>redox couple to investigate DNA monolayers and the potential advantages of this system over the standard Fe(CN)<sub>6</sub><sup>3-/4-</sup> redox couple are demonstrated.<span style='mso-spacerun:yes'>  </span>B-DNA monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn<sup>2+</sup> at pH 8.6 and studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) with IrCl<sub>6</sub><sup>2-/3-</sup>.<span style='mso-spacerun:yes'>  </span><sup><span style='mso-spacerun:yes'> </span></sup>Compared to B-DNA, M-DNA showed significant changes in CV, EIS and CA spectra.<span style='mso-spacerun:yes'>  </span>However, only small changes were observed when the monolayers were incubated in Mg<sup>2+ </sup>at pH 8.6 or in Zn<sup>2+</sup> at pH 6.0.<span style='mso-spacerun:yes'>  </span>The heterogeneous electron-transfer rate (<i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>) between the redox probe and the surface of a bare gold electrode was determined to be 5.7 x 10<sup>-3</sup> cm/s.<span style='mso-spacerun:yes'>  </span>For a B-DNA modified electrode, the <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> through the monolayer was too slow to be measured.<span style='mso-spacerun:yes'>  </span>However, under M-DNA conditions, a <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> of 1.5 x 10<sup>-3</sup> cm/s was reached.<span style='mso-spacerun:yes'>  </span>As well, the percent change in resistance to charge transfer (R<sub>CT</sub>), measured by EIS, <span class=GramE>was</span> used to illustrate the dependence of M-DNA formation on pH.<span style='mso-spacerun:yes'>  </span>This result is consistent with Zn<sup>2+</sup> ions replacing the imino protons on thymine and guanine residues.<span style='mso-spacerun:yes'>  </span>Also, at low pH values, the percent change in R<sub>CT</sub> seems to be greater for <span class=GramE><span style='mso-bidi-font-weight:bold'>d(</span></span><span style='mso-bidi-font-weight: bold'>TG)<sub>15</sub>d(CA)<sub>15</sub> compared to oligomers with mixed d(AT) and d(TG)d(CA) tracts.<span style='mso-spacerun:yes'>  </span></span>The IrCl<sub>6</sub><sup>2-/3- </sup>redox couple was also effective in differentiating between single-stranded and double-stranded DNA during dehybridization and rehybridization experiments.<span style='mso-spacerun:yes'>  </span><span style='mso-bidi-font-weight:bold'><o:p></o:p></span></p>
5

Localization of metal ions in DNA

Dinsmore, Michael John 28 April 2008 (has links)
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-bidi-font-weight:bold'>M-DNA is a novel complex formed between DNA and transition metal ions under alkaline conditions.<span style='mso-spacerun:yes'>  </span>The unique properties of M-DNA were manipulated in order to rationally place metal ions at specific regions within a double-stranded DNA helix.<span style='mso-spacerun:yes'>   </span>Investigations using thermal denaturation profiles and the ethidium fluorescence assay illustrate that the pH at which M-DNA formation occurs is influenced heavily by the DNA sequence and base composition.<span style='mso-spacerun:yes'>  </span>For instance, DNA with a sequence consisting of poly[d(TG)d(CA)] is completely converted to M-DNA at pH 7.9 while DNA consisting entirely of poly[d(AT)] remains in the B-DNA conformation until a pH of 8.6 is reached.<span style='mso-spacerun:yes'>  </span>The pH at which M-DNA formation occurs is further decreased by the incorporation of 4-thiothymine (s<sup>4</sup>T).<span style='mso-spacerun:yes'>  </span>DNA oligomers with a mixed sequence composed of </span>half d(AT) and the other half d(TG)d(CA)<span style='mso-bidi-font-weight: bold'> showed that only 50% of the DNA is able to incorporate Zn<sup>2+</sup> ions at pH 7.9.<span style='mso-spacerun:yes'>  </span>This suggests that only regions corresponding to the tracts of <span class=GramE>d(</span>TG)d(CA) are being transformed.<span style='mso-spacerun:yes'>   </span><o:p></o:p></span></p> <p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-fareast-language:ZH-CN'>Duplex DNA monolayers were self-assembled on gold through <span class=GramE>a</span> Au-S linkage and both B- and M-DNA conformations were studied using X-ray photoelectron spectroscopy (XPS) in order to better elucidate the location of the metal ions.<span style='mso-spacerun:yes'>  </span>The film thickness, density, elemental composition and ratios for samples were analyzed and compared.<span style='mso-spacerun:yes'>  </span>The DNA surface coverage, calculated from both XPS and electrochemical measurements, was <span class=GramE>approximately 1.2 x 10<sup>13 </sup>molecules/cm<sup>2</sup></span><sub> </sub>for B-DNA.<span style='mso-spacerun:yes'>  </span>All samples showed distinct peaks for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked DNA.<span style='mso-spacerun:yes'>  </span></span><span style='mso-bidi-font-weight: bold'>On addition of Zn<sup>2+</sup> to form M-DNA the C 1s, P 2p and S 2p showed only small changes </span><span style='mso-fareast-language:ZH-CN'>while both the N 1s and O 1s spectra changed considerably.<span style='mso-spacerun:yes'>  </span>This result is consistent with Zn<sup>2+</sup> interacting with oxygen on the phosphate backbone as well as replacing the imino protons of thymine (T) and guanine (G) in M-DNA.<span style='mso-spacerun:yes'>   </span>Analysis of the Zn 2p spectra also demonstrated that the concentration of Zn<sup>2+</sup> present under M-DNA conditions is consistent with Zn<sup>2+</sup> binding to both the phosphate backbone as well as replacing the imino protons of T or G in each base pair.<span style='mso-spacerun:yes'>  </span>After the M-DNA monolayer is washed with a buffer containing only Na<sup>+</sup> the Zn<sup>2+</sup> bound to the phosphate backbone is removed while the Zn<sup>2+</sup> bound internally still remains. </span><span style='mso-bidi-font-weight:bold'>Variable angle x-ray photoelectron spectroscopy (VAXPS) was also used to examine monolayers consisting of mixed sequence oligomers.<span style='mso-spacerun:yes'>  </span>Preliminary results suggest that under M-DNA conditions, the zinc to phosphate ratio changes relative to the position of the <span class=GramE>d(</span>TG)d(CA) tract being at the top or bottom of the monolayer.<span style='mso-spacerun:yes'>  </span><span style='mso-spacerun:yes'> </span><o:p></o:p></span></p> <p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span style='mso-bidi-font-weight:bold'>Electrochemistry was also used to investigate the properties of M-DNA monolayers on gold and examine how the localization of metal ions affects the resistance through the DNA monolayer.<span style='mso-spacerun:yes'>  </span>T</span>he effectiveness of using the IrCl<sub>6</sub><sup>2-/3- </sup>redox couple to investigate DNA monolayers and the potential advantages of this system over the standard Fe(CN)<sub>6</sub><sup>3-/4-</sup> redox couple are demonstrated.<span style='mso-spacerun:yes'>  </span>B-DNA monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn<sup>2+</sup> at pH 8.6 and studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) with IrCl<sub>6</sub><sup>2-/3-</sup>.<span style='mso-spacerun:yes'>  </span><sup><span style='mso-spacerun:yes'> </span></sup>Compared to B-DNA, M-DNA showed significant changes in CV, EIS and CA spectra.<span style='mso-spacerun:yes'>  </span>However, only small changes were observed when the monolayers were incubated in Mg<sup>2+ </sup>at pH 8.6 or in Zn<sup>2+</sup> at pH 6.0.<span style='mso-spacerun:yes'>  </span>The heterogeneous electron-transfer rate (<i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>) between the redox probe and the surface of a bare gold electrode was determined to be 5.7 x 10<sup>-3</sup> cm/s.<span style='mso-spacerun:yes'>  </span>For a B-DNA modified electrode, the <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> through the monolayer was too slow to be measured.<span style='mso-spacerun:yes'>  </span>However, under M-DNA conditions, a <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> of 1.5 x 10<sup>-3</sup> cm/s was reached.<span style='mso-spacerun:yes'>  </span>As well, the percent change in resistance to charge transfer (R<sub>CT</sub>), measured by EIS, <span class=GramE>was</span> used to illustrate the dependence of M-DNA formation on pH.<span style='mso-spacerun:yes'>  </span>This result is consistent with Zn<sup>2+</sup> ions replacing the imino protons on thymine and guanine residues.<span style='mso-spacerun:yes'>  </span>Also, at low pH values, the percent change in R<sub>CT</sub> seems to be greater for <span class=GramE><span style='mso-bidi-font-weight:bold'>d(</span></span><span style='mso-bidi-font-weight: bold'>TG)<sub>15</sub>d(CA)<sub>15</sub> compared to oligomers with mixed d(AT) and d(TG)d(CA) tracts.<span style='mso-spacerun:yes'>  </span></span>The IrCl<sub>6</sub><sup>2-/3- </sup>redox couple was also effective in differentiating between single-stranded and double-stranded DNA during dehybridization and rehybridization experiments.<span style='mso-spacerun:yes'>  </span><span style='mso-bidi-font-weight:bold'><o:p></o:p></span></p>

Page generated in 0.1607 seconds