• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reactivity studies of antitumor active dirhodium compounds with DNA oligonucleotides

Kang, Mijeong 25 April 2007 (has links)
The study of the mechanism of action of an antitumor active drug is essential for improving the efficacy and reducing the side effects of the drug as well as for developing better alternatives. In this vein, reactions of dirhodium compounds with DNA oligonucleotides were investigated by the techniques of mass spectrometry, HPLC, and NMR spectroscopic analytical methods. The relative reactivities of three dirhodium compounds, namely Rh2(O2CCH3)4, Rh2(O2CCF3)4, and [Rh2(O2CCH3)2(CH3CN)6](BF4)2, with DNA oligonucleotides were studied and compared to the clinically used anticancer drugs cisplatin and carboplatin using both MALDI and ESI mass spectrometric methods. The compound Rh2(O2CCF3)4 exhibits the highest reactivity among the dirhodium compounds, which is comparable to cisplatin, followed by [Rh2(O2CCH3)2(CH3CN)6](BF4)2, and finally Rh2(O2CCH3)4 which is the least reactive. Various dirhodium-oligonucleotide adducts were detected with both MALDI and ESI methods, which involve substitution of different numbers of the original ligands of the given dirhodium compound. ESI MS was found to be a sufficiently soft ionization method for detecting intact metal adducts, and CID MS-MS was useful for detecting weakly bound species such as axial adducts [M+Rh2(O2CCH3)4] and for comparing the relative bond strength between ligands in the metal adduct. A combination of anion exchange HPLC purification and enzymatic digestion studies of the adducts of Rh2(O2CCH3)4 with the 5'-CCTTCAACTCTC oligonucleotide revealed that Rh2(O2CCH3)4 binds to the center or to the ends of the oligonucleotide sequence by displacement of one or two acetate groups. Kinetic products of the type [M+Rh2(O2CCH3)3] obtained from the reaction of Rh2(O2CCH3)4 with 5'-CTCTCAACTTCC were separated by employing both reverse phase and anion exchange HPLC methods. The adduct that involves binding of the dirhodium unit to the exocyclic N4 atom of C5 and the N7 of A6 was found to be most stable whereas other adducts involving binding of C3 or C12 residues are clearly less stable. Reaction of cis-[Rh2(DAP)(O2CCH3)3(CH3OH)](O2CCH3) (DAP = 1,12- diazaperylene) with 5'-CTCTCAACTTCC produced a major adduct in which DAP group intercalates between 6A and 7A in the double stranded adduct with the rhodium atom that is not coordinated to the DAP group forming a covalent bond to the N7 atom of 6A which lends stability to the adduct.
2

Cyclic Enzymatic Solid Phase Synthesis of DNA Oligonucleotides on an Epoxide-Activated Resin

Khan, Ahmed Mirza 15 May 2008 (has links)
Standard chemical DNA synthesis with isotope labels requires expensive reagents; moreover, a large excess of phosphoramadites (typically 50-100 fold) must be used. We developed a process where enzymatic cyclic solid phase synthesis of DNA allows for more economic reagent use. A DNA template was immobilized on an epoxy-activated solid support. This chemistry was chosen because the formed linkage is inert to high pH conditions. High efficiency of the covalent attachment was observed when the reaction was carried out in MgCl2/CAPS buffer. It was found that Mg2+ enables the reaction to be completed over a period of 14 h, compared to 72 h under standard conditions. DNA synthesis was carried in a cyclic fashion on a support bound DNA using Klenow fragment.
3

Mitochondrial DNA in sensitive forensic analysis /

Nilsson, Martina, January 2007 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2007. / Härtill 5 uppsatser.

Page generated in 0.0475 seconds