• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human DNA polymerase ε associated proteins:identification and characterization of the B-subunit of DNA polymerase ε and TopBP1

Mäkiniemi, M. (Minna) 17 April 2001 (has links)
Abstract DNA polymerase ε from HeLa cells has been purified as a heterodimer of a 261 kDa catalytic subunit and a tightly associated smaller polypeptide, the B-subunit. The cDNAs encoding the B-subunits of both human and mouse Pol ε were cloned and shown to encode proteins with a predicted molecular weight of 59 kDa. These subunits are 90 % identical and share 22 % identity with the 80 kDa B-subunit of Saccharomyces cerevisiae Pol ε. The gene for the human Pol ε B-subunit was localized to chromosome 14q21-q22 by fluorescence in situ hybridization. Primary structure analysis of the Pol ε B-subunits demonstrated that they are similar to the B-subunits of Pol α, Pol δ and archaeal DNA polymerases, and comprise a novel protein family of DNA polymerase associated-B-subunits. The family members have 12 conserved motifs distributed in the C-terminal parts, which apparently form crucial structural and functional sites. Secondary structure predictions indicate that the B-subunits share a similar fold, and phylogenetic analysis demonstrated that the B-subunits of Pol α and ε form one subfamily, while the B-subunits of Pol δ and the archaeal proteins form a second subfamily. The corresponding eukaryotic and archaeal catalytic subunits are not related, but all have the characteristics of replicative DNA polymerases. This indicates that the B-subunits of replicative DNA polymerases from archaea to eukaryotes belong to the same protein family and perform similar functions. In S. cerevisiae, Pol ε associates with the checkpoint protein Dpb11. In this study, a human protein, TopBP1, with structural similarity to the budding yeast Dpb11, fission yeast Cut5 and the breast cancer susceptibility gene product Brca1 was identified. The human TOPBP1 gene localizes to chromosome 3q21-q23 and encodes a phosphoprotein of 180 kDa. TopBP1 has eight BRCT domains and is also closely related to the recently identified Drosophila melanogaster Mus101. TopBP1 expression is induced at the G1/S boundary and it performs an important role in DNA replication, as evidenced by inhibition of DNA synthesis by TopBP1 antiserum in isolated nuclei. TopBP1 also associates with Pol ε and localizes, together with Brca1 to distinct foci in S-phase, but not to sites of ongoing DNA replication. Inhibition of DNA replication leads to re-localization of TopBP1 and Brca1 to stalled replication forks. DNA damage induces formation of distinct TopBP1 foci that co-localize with Brca1 in S-phase, but not in G1-phase. The role of TopBP1 in the DNA damage response is also supported by the interaction between TopBP1 and the human checkpoint protein hRad9. These results implicate TopBP1 in replication and checkpoint functions.
2

Structural and biochemical basis for the high fidelity and processivity of DNA polymerase ε

Ganai, Rais Ahmad January 2015 (has links)
DNA polymerase epsilon (Pol ε) is a multi-subunit B-family DNA polymerase that is involved in leading strand DNA replication in eukaryotes. DNA Pol ε in yeast consists of four subunits, Pol2, Dpb2, Dpb3, and Dpb4. Pol2 is the catalytic subunit and Dpb2, Dpb3, and Dpb4 are the accessory subunits. Pol2 can be further divided into an N-terminal catalytic core (Pol2core) containing both the polymerase and exonuclease active sites and a C-terminus domain. We determined the X-ray crystal structure of Pol2core at 2.2 Å bound to DNA and with an incoming dATP. Pol ε has typical fingers, palm, thumb, exonuclease, and N-terminal domains in common with all other B-family DNA polymerases. However, we also identified a seemingly novel domain we named the P-domain that only appears to be present in Pol ε. This domain partially encircles the nascent duplex DNA as it leaves the active site and contributes to the high intrinsic processivity of Pol ε. To ask if the crystal structure of Pol2core can serve as a model for catalysis by Pol ε, we investigated how the C-terminus of Pol2 and the accessory subunits of Pol ε influence the enzymatic mechanism by which Pol ε builds new DNA efficiently and with high fidelity. Pre-steady state kinetics revealed that the exonuclease and polymerization rates were comparable between Pol2core and Pol ε. However, a global fit of the data over five nucleotide-incorporation events revealed that Pol ε is slightly more processive than Pol2 core. The largest differences were observed when measuring the time for loading the polymerase onto a 3' primer-terminus and the subsequent incorporation of one nucleotide. We found that Pol ε needed less than a second to incorporate the first nucleotide, but it took several seconds for Pol2core to incorporate similar amounts of the first nucleotide. B-family polymerases have evolved an extended β-hairpin loop that is important for switching the primer terminus between the polymerase and exonuclease active sites. The high-resolution structure of Pol2core revealed that Pol ε does not possess an extended β-hairpin loop. Here, we show that Pol ε can processively transfer a mismatched 3' primer-terminus between the polymerase and exonuclease active sites despite the absence of a β-hairpin loop. Additionally we have characterized a series of amino acid substitutions in Pol ε that lead to altered partitioning of the 3'primer-terminus between the two active sites. In a final set of experiments, we investigated the ability of Pol ε to displace the downstream double-stranded DNA while carrying out DNA synthesis. Pol ε displaced only one base pair when encountering double-stranded DNA after filling a gap or a nick. However, exonuclease deficient Pol ε carries out robust strand displacement synthesis and can reach the end of the templates tested here. Similarly, an abasic site or a ribonucleotide on the 5'-end of the downstream primer was efficiently displaced but still only by one nucleotide. However, a flap on the 5'-end of the blocking primer resembling a D-loop inhibited Pol ε before it could reach the double-stranded junction. Our results are in agreement with the possible involvement of Pol ε in short-patch base excision repair and ribonucleotide excision repair but not in D-loop extension or long-patch base excision repair.

Page generated in 0.0559 seconds