1 |
DNA lesions as cellular poisons of topoisomerase II[alpha]Vélez-Cruz, Renier. January 2005 (has links)
Thesis (Ph. D. in Biochemistry)--Vanderbilt University, Dec. 2005. / Title from title screen. Includes bibliographical references.
|
2 |
Proposed models for quinobenzoxazine and psorospermin-topoisomerase II-DNA complexes /Kwok, Yan, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 213-221). Available also in a digital version from Dissertation Abstracts.
|
3 |
Topoisomerases II in the cell cycle of dinoflagellates /Mak, Ka Man. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 103-116). Also available in electronic version.
|
4 |
Effect of DNA topoisomerase II-targeting antitumor drugs in Neurospora crassa similarities to prokaryotic type II DNA topoisomerases /Gupta, Ranjan. Brockman, Herman E. January 1990 (has links)
Thesis (Ed. D.)--Illinois State University, 1990. / Title from title page screen, viewed November 28, 2005. Dissertation Committee: Herman E. Brockman (chair), Alan J. Katz, Lynne A. Lucher, Radheshyam K. Jayaswal, David F. Weber, Anthony E. Liberta. Includes bibliographical references (leaves 114-131) and abstract. Also available in print.
|
5 |
Centromeric functions and dynamics of DNA topoisomerase II in S. cerevisiaeWarsi, Tariq Hussain, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 227-256). Issued in print and online. Available via ProQuest Digital Dissertations.
|
6 |
Použití RNA interference pro ovlivnění hladin DNA topoisomerasy II v nádorových buňkách a její vliv na protinádorový účinek antracyklinových cytostatik. / The use of RNA interference for the modification of DNA topoisomerase II levels in cancer cells and its influence on the antineoplastic effect of anthracyclines.Klieber, Robin January 2019 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department od Biochemical Sciences Candidate: Bc. Robin Klieber Supervisor: PharmDr. Anna Jirkovská, Ph.D. Title of thesis: The use of RNA interference for the modification of DNA topoisomerase II levels in cancer cells and its influence on the antineoplastic effect of anthracyclines. Topoisomerase II (TOP II) is an enzyme that alters the topological state of the DNA double helix during physiological processes through the formation of transient DNA double strand breaks. Two TOP II isoforms are known: TOP IIα is essential for proper separation of chromosomes in mitotic cells, whereas TOP IIβ is primarily associated with gene transcription. Anthracycline antibiotics (ANT) belong to the group of topoisomerase poisons that stabilize the covalent complex of TOP II and DNA. This prevents the religation of the DNA double strand breaks and thus causes irreversible DNA damage leading to programmed cell death. Although ANTs are frequently administered in various antineoplastic protocols (hematooncological malignancies, hormone-dependent tumors and others), the therapy still possess a high risk of irreversible cardiotoxicity. The mechanism of cardiotoxicity remains unraveled. However, it has been previously discussed that TOP IIβ inhibition could play a...
|
7 |
Analysis of genome stability in mutants defective for the SUMO isopeptidase Smt4/Ulp2 /Lee, Ming-Ta, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 213-243). Issued in print and online. Available via ProQuest Digital Dissertations.
|
8 |
Physiological concentrations of glucocorticoids induce pathological DNA double-strand breaks / 生理濃度の糖質コルチコイドは病的なDNA二重鎖切断を引き起こすAkter, Salma 23 March 2023 (has links)
付記する学位プログラム名: 充実した健康長寿社会を築く総合医療開発リーダー育成プログラム / 京都大学 / 新制・課程博士 / 博士(医学) / 甲第24521号 / 医博第4963号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 斎藤 通紀, 教授 萩原 正敏, 教授 戸井 雅和 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
9 |
Vliv topoisomerasy II beta na citlivost nádorových buněk k protinádorové terapii / The effects of topoisomerase II beta on the sensitivity of the cancer cells to the antineoplasticsJaščevská, Nikola January 2021 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Department of Biochemical Sciences Candidate: Nikola Jaščevská Supervisor: PharmDr. Anna Jirkovská, Ph.D. Title of diploma thesis: The effects of topoisomerase II beta on the sensitivity of the cancer cells to the antineoplastics Topoisomerase II (TOP II) is a cellular enzyme responsible for solving topological problems of double-stranded DNA. Alpha and beta isoforms of TOP II are different gene products having similar catalytic activities. The expression of TOP IIα is cell-cycle dependent, peaking in G2/M phase, while TOP II isoform is expressed constitutively throughout the cell cycle. It is therefore present also in non-proliferating differentiated cells. Anthracycline antibiotics are an old class of anticancer drugs, belonging to TOP II poisons. Although their clinical usefulness is high, the incidence of side effects (especially myelotoxicity and cardiotoxicity) may limit the therapy. The key role of TOP II inhibition, which is present also in cardiomyocytes, has been increasingly discussed. Dexrazoxane, the only clinically used cardioprotective, leads to depletion of TOP II in cardiomyocytes, which may explain its cardioprotection. Although TOP II was previously shown to be dispensable for cellular proliferation, its possible...
|
10 |
A role for topoisomerase II alpha in chromosome damage in human cell linesTerry, Samantha Y. A. January 2010 (has links)
Human response to ionising radiation (IR) shows a wide variation. This is most clearly seen in the radiation-response of cells as measured by frequencies of chromosomal aberrations. Different frequencies of IR-induced aberrations can be conveniently observed in phytohaemagglutin-stimulated peripheral blood T-lymphocytes from both normal individuals and sporadic cancer cases, in either metaphase chromosomes or as micronuclei in the following cell cycle. Metaphase cells show frequent chromatid breaks, defined as chromatid discontinuities or terminal deletions, if irradiated in the G 2 -phase of the cell cycle. It has been shown that the frequency of chromatid breaks in cells from approximately 40% of sporadic breast cancer patients, are significantly higher than in groups of normal individuals. This suggests that elevated radiation-induced chromatid break frequency may be linked with susceptibility to breast cancer. It is known that chromatid breaks are initiated by a double strand break (DSB), but it appears that the two are linked only indirectly as repair kinetics for DSBs and chromatid breaks do not match. Therefore, the underlying causes of the wide variation in frequencies of chromatid breaks in irradiated T-lymphocytes from different normal individuals and from sporadic breast cancer cases are still unclear but it is unlikely to be linked directly to DSB rejoining. My research has focused on the mechanism through which chromatid breaks are formed from initial DSBs. The lack of a direct association suggested that a signalling process might be involved, connecting the initial DSB and resulting chromatid break. The signal model, suggested that the initial DSB is located within a chromatin loop that leads to an intra- or interchromatid rearrangement resulting in incomplete mis-joining of chromatin ends during the decatenation of chromatids during G 2 . It was therefore proposed that topoisomerase II alpha (topo IIα) might be involved, mainly because of its ability to incise DNA and its role in sister chromatid decatenation. During my PhD research I have used a strategy of altering topo II activity or expression and studying whether this alters IR-induced chromatid break frequency. The first approach involved cell lines that varied in topo IIα expression. The frequency of IR-induced chromatid breaks was found to correlate positively with topo IIα expression level, as measured in three different cell lines by immunoblotting, i.e. two cell lines with lower topo IIα expression exhibited lower chromatid break frequency. Topo II activity in these three cell lines was also estimated indirectly by the ability of a topo IIα poison to activate the G 2 /M checkpoint, and this related well with topo IIα expression. A second approach involved ‘knocking down’ topo IIα protein expression by silencing RNA (siRNA). Lowered topo IIα expression was confirmed by immunoblotting and polymerase chain reaction. SiRNA-lowered topo IIα expression correlated with a decreased IR-induced chromatid break frequency. In a third series of experiments cells were treated with ICRF-193, a topo IIα catalytic inhibitor. It was shown that inhibition of topo IIα also significantly reduced IR-induced chromatid breaks. I also showed that lowered chromatid break frequency was not due to cells with high chromatid break frequencies being blocked in G 2 as the mitotic index was not altered significantly in cells with lowered topo IIα expression or activity. These experiments show that topo IIα is involved in IR-induced chromatid break formation. The final experiments reported here attempted to show how topo II might be recruited in the process of forming IR-induced chromatid breaks. Hydrogen peroxide was used as a source of reactive oxygen species (reported to poison topo IIα) and it was shown that topo IIα under these conditions is involved in the entanglement of metaphase chromosomes and formation of chromatin ‘dots’ as well as chromatid breaks. Experiments using atomic force microscopy attempted to confirm these dots as excised chromatin loops. The possible role of topo IIα in both radiation- and hydrogen peroxide-induced primary DNA damage was also tested. It was shown that topo IIα does not affect radiation-induced DSBs, even though it does affect chromatid break frequency. Also, topo IIα does not affect hydrogen peroxide-induced DNA damage at low doses. The results support the idea that topo IIα is involved in the conversion of DSBs to chromatid breaks after both irradiation and treatment with hydrogen peroxide at a low concentrations. I have demonstrated that topo IIα is involved in forming IR-induced chromatid breaks, most likely by converting the initial DSBs into chromosomal aberrations as suggested by the signal model.
|
Page generated in 0.0671 seconds