• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The CIS-Required DNA Sequences for Bacteriophage Mu DNA Transposition and Maturation

Harel, Josee 03 1900 (has links)
No description available.
2

In vivo and in vitro studies on bacteriophage Mu transposition

Lund, P. A. January 1984 (has links)
No description available.
3

DNA repair by the Mu transposase

Choi, Wonyoung 14 December 2010 (has links)
Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common θ strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the θ intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA from a previous host that is still attached to the ends of the incoming Mu genome. Our studies show that the cryptic endonuclease activity reported for the isolated C-terminal domain of the transposase MuA, which is not observed in the full-length protein or in the assembled transpososome in vitro, is required in vivo for removal of the attached host DNA or “5’flap” after the infecting Mu genome has integrated into the E. coli chromosome. I have identified additional phage and host factors required for flap removal in vivo, which include an early Mu protein called Ner, and the E. coli protein ClpX. Ner regulates bidirectional transcription through the Mu transposition enhancer, while ClpX, a molecular chaperone, is known to interact with the C-terminus of MuA to remodel the transpososome for replication. The transpososome is a multi-subunit MuA complex assembled on the two paired ends of Mu. The enhancer DNA segment serves as an essential scaffold for transpososome assembly, and remains stably associated with θ strand transfer MuA complexes. I hypothesize that Ner-regulated transcription through the enhancer remodels transpososome conformation in the presence of ClpX, promoting activation of the MuA endonuclease, which resects flanking DNA during the repair pathway of Mu transposition. / text

Page generated in 0.1125 seconds