Spelling suggestions: "subject:"reparatur"" "subject:"restreparatur""
1 |
Ein ATP-abhängiger Regulationsmechanismus in einem Proteinkomplex der DNA-ReparaturPetermann, Eva. January 2004 (has links)
Berlin, Techn. Universiẗat, Diss., 2004. / Dateiformat: zip, Dateien im PDF-Format.
|
2 |
Identifikation neuer Komponenten der Chk1 vermittelten SignaltransduktionSchadel, Vanessa. January 2009 (has links)
Heidelberg, Univ., Diss., 2008.
|
3 |
Analysis of the role of Rad5 for the regulation of repair of DSB, small deletions and oxidative damageGómez-Paramio, Idoia January 2007 (has links)
Zugl.: München, Univ., Diss., 2007
|
4 |
Monosaccharid-Konjugate von Inhibitoren der O 6-Methylguanin-DNA-Methyltransferase, der Poly-(ADP-ribose)-Polymerase und des SWITCH-Phänomens des HIV-Hüllproteins gp120 Synthese, biologische Aktivität und Struktur-Wirkungsbeziehungen /Reinhard, Jost. January 2001 (has links)
Heidelberg, Univ., Diss., 2000.
|
5 |
Funktionsstörungen von DNA-Reparaturgenen als Risikofaktor für die Entwicklung von hereditären kolorektalen Karzinomen / Defects in DNA repair genes as a risk for the development of hereditary colorectal cancerMünch, Andrea January 2010 (has links) (PDF)
5 bis 10 % aller kolorektalen Karzinome entstehen auf dem Boden einer erblichen Disposition. Bei der Tumorgenese dieser hereditären kolorektalen Karzinome spielen pathogenetisch vor allem Mutationen in DNA-Reparaturgenen eine wichtige Rolle. Ziel dieser Arbeit war es, anhand neuester Literatur darzustellen, welche Bedeutung Funktionsstörungen in DNA-Reparaturgenen als Risikofaktoren bei der Entstehung von erblichen kolorektalen Karzinomen haben.Die meisten Mutationen unter den DNA-Reparaturgenen finden sich in Genen des Mismatch-Reparatursystems. Genetische Keimbahnmutationen in MMR-Genen sind an der Pathogenese von vier verschiedenen Krebssyndromen beteiligt, die zu kolorektalen Karzinomen führen können. Es sind das autosomal-dominant vererbte HNPCC-Syndrom mit Mutationen im hMLH1-, hMSH2-, hMSH6-, hMLH3-, hPMS2- und hPMS1-Gen, das autosomal-dominant vererbte Muir-Torre-Syndrom dessen Grundlage Mutationen im hMSH2-, hMLH1- und hMSH6-Gen sind, das autosomal-dominant oder autosomal-rezessiv vererbte Turcot-Syndrom mit Mutationen im hMLH1-, hPMS2-, hMSH2- und hMSH6-Gen sowie das autosomal-rezessiv vererbte Mismatch-Repair-Deficiency-Syndrom mit Mutationen im hMLH1-, hMSH2-, hMSH6- und hPMS2-Gen. Neben genetischen Mutationen werden auch zunehmend epigenetische Modifikationen entdeckt, die DNA-Reparaturgene durch Promotorhypermethylierung inaktivieren und so an der Pathogenese erblicher kolorektaler Karzinome mitwirken. Bis jetzt sind Epimutationen in den MMR-Genen hMLH1 und hMSH2 in der Literatur beschrieben worden. Auch im DNA-Reparaturgen MGMT, einem Gen aus dem Reversions-Reparatursystem, konnten Epimutationen nachgewiesen werden, die die Entstehung von kolorektalen Tumoren fördern.Funktionsstörungen in DNA-Reparaturgenen des Basen-Exzisions-Reparatursystems sind ebenso an der Tumorgenese des kolorektalen Karzinoms beteiligt. Genetische Keimbahnmutationen im DNA-Reparaturgen MUTYH führen zur MUTYH-assoziierten Polyposis (MAP), einem erblichen Krebssyndrom, mit einem autosomal-rezessiven Erbgang. Genetische Mutationen konnten auch im MBD4-Gen, einem weiteren BER-Gen, in kolorektalen Karzinomen nachgewiesen werden. / In about 5-10% of all cases, colorectal cancer is associated with a highly penetrant dominant or recessive inherited syndrome. Mutations in DNA repair genes play an important role in the tumorigenesis of hereditary colorectal cancer. A systematic literature search was performed to show the role of defects in DNA repair genes as a risk for the development of hereditary colorectal cancer. Germline mutations in DNA mismatch repair (MMR) genes are associated with four different hereditary colorectal cancer syndromes. The most common of these is HNPCC (hereditary non-polyposis colorectal cancer), an autosomal dominant tumour predisposition and is caused by a mutation in one of the mismatch repair genes: hMLH1, hMSH2, hMSH6, hPMS2, hMLH3 or hPMS1. Muir-Torre syndrome is an autosomal dominant inherited disorder associated with germline mutations in the MMR genes hMSH2, hMLH1 or hMSH6. Both autosomal dominant and autosomal recessive modes of inheritance have been described of Turcot syndrome with MMR germline mutations in hMLH1, hPMS2, hMSH2 or hMSH6. The Mismatch-repair-deficiency (MMR-D) syndrome, a novel recessively inherited cancer syndrome, is due to biallelic mutations in one of the MMR genes hMLH1, hMSH2, hMSH6 or hPMS2. Not only genetic alterations play an important role in the development of colorectal cancer also epigenetic modifications are involved. Germline epimutations by promoter hypermethylation of the mismatch repair genes hMLH1 and hMSH2 in HNPCC has been revealed as well as the inactivation of the DNA repair gene MGMT by promoter hypermethylation as a common event in colorectal cancer. Inherited defects in base excision repair genes are also implicated in the colorectal tumorigenesis. MAP (MUTYH-associated polyposis) is a recently described colorectal adenoma and carcinoma predisposition syndrome with biallelic-inherited mutations of MUTYH gene, which encodes a DNA glycosylase in the base excision repair pathway. Mutations of MBD4 gene have also been reported in colorectal cancer.
|
6 |
DNA-Reparaturgene als Risikofaktoren für familiären Brustkrebs / DNA repair genes as risk factors for familial breast cancerGerlinger, Simone January 2010 (has links) (PDF)
Die Voraussetzung für die genomische Integrität einer Zelle ist eine funktionierende DNA-Reparatur. Bei deren Zusammenbruch kommt es zur Tumorgenese. In dieser Arbeit wurde literarisch untersucht, welchen Einfluss DNA-Reparaturgene auf das Risiko für die Entwicklung von familiärem Brustkrebs nehmen. Basis für die Brusttumorgenese ist eine defekte Rekombinations-Reparatur. Zunehmend treten auch andere, teilweise weniger erforschte, Reparaturwege in den Vordergrund. Diese könnten miteinander sogar ein komplexes DNA-Reparatur-Netzwerk bilden. Sind deren Komponenten defekt, kommt es zur Brusttumorgenese. Heterozygote Träger einer Mutation in den zentralen Genen haben dabei ein erhöhtes Risiko für familiäre Mammakarzinome. Biallele Träger entwickeln teilweise sehr spezifische hereditäre Brustkrebssyndrome oder Brustkrebs-assoziierte hereditäre Krebssyndrome. Trägerinnen von Mutationen in den DNA-Reparaturgenen mit hoher Penetranz, BRCA1, BRCA2 und TP53, haben ein zwischen 3- und 22-fach erhöhtes Brustkrebsrisiko. Mutationsträgerinnen von Genen mit niedriger Penetranz wie CHEK2, ATM, NBS1 und die FA-Gene BRIP1 und PALB2 haben ein etwa 2- bis 5-faches Risiko. Normvarianten der DNA-Reparaturgene können sogar für ein noch höheres Risiko prädisponieren. Die Polymorphismen üben einen additiven oder dominant negativen Effekt aus und modifizieren so das familiäre Brustkrebsrisiko kumulativ. Weiterhin wird dieses polygene Modell durch Umweltfaktoren moduliert, die das Risiko zusätzlich erhöhen können. Die modulierenden Einflüsse aller bislang detektierten Risikofaktoren müssen jedoch immer wieder durch neue genetische Modelle evaluiert werden. Die DNA-Reparaturgene sind für etwa 30% aller familiären Brustkrebsfälle verantwortlich, der große Rest ist weiterhin unerforscht. Viele, bislang noch wenig beachtete oder unbekannte DNA-Reparaturgene und Gene, die nicht als solche klassifiziert sind, haben das Potential zum Risikogen für Brustkrebs. Nach heutigem Kenntnisstand handelt es sich bei der Entstehung von familiärem Brustkrebs um ein multifaktorielles Geschehen auf der Basis polygenetischer Veränderungen in den DNA-Reparaturgenen. / Mutations in DNA repair genes play an important role in the tumorigenesis of hereditary carcinomas. A systematic literature search was performed to show the influence of these genes as a risk factor for the development of familial breast cancer. Breast tumour cells lost their genomic integrity mainly due to a defective recombination repair. Increasingly other DNA damage response pathways will be more and more involved and they could pool a complex DNA repair network. If components of the network are mutated, it comes to the breast tumour genesis. Carriers of germline mutations in one of both alleles of the central genes have a higher risk for familial breast cancer. On the other hand, carriers of biallelic mutations develop partially specific recessive hereditary breast cancer syndromes or hereditary cancer syndromes associated with breast cancer. BRCA1, BRCA2 and TP53 are high-penetrance breast cancer susceptibility genes, and disease-causing variants confer a high risk of breast cancer, approximately 3- to 22-fold relative risk. CHEK2, ATM, NBS1 and the both Fanconi anemia genes BRIP1 and PALP2 have a lower penetrance for developing breast cancer and they increase a relative risk about 2- to 5-fold. Additionally, single nucleotide polymorphism exerts influence on the familial breast cancer risk in form of an additive or negative dominant effect. Last but not least this polygenic model will be modulated by various environmental factors. After today's state of knowledge, the origin of familial breast cancer is a matter of multifactorial events on the base of polygenic changes in DNA repair genes.
|
7 |
Primäre Mikrozephalie: Einblicke in Expression und Funktion von MCPH1/Microcephalin und seiner Isoformen / Primary microcephaly: insights into expression and function of MCPH1/Microcephalin and their isoformsGavvovidis, Ioannis January 2010 (has links) (PDF)
Primäre Mikrozephalie (MCPH) ist eine heterogene, autosomal rezessive Störung des Menschen, die durch eine enorme Reduzierung des Hirnvolumens und variable geistige Behinderung ohne zusätzliche neurologische Defizite charakterisiert ist. Fünf einzeln ursächliche Gene sind bislang identifiziert. Zelluläres Merkmal von Patienten mit biallelischen Mutationen im MCPH1-Gen ist die vorzeitige Chromosomenkondensation in der G2-Phase des Zellzyklus sowie die verzögerte Chromosomendekondensation in der darauf folgenden G1-Phase (PCC-Syndrom). In der vorliegenden Arbeit wird gezeigt, dass MCPH1 für zwei Haupttranskripte kodiert: Full-length-MCPH1 und ein Transkript ohne die Sequenz der letzten fünf Exons (MCPH1De9-14). Das vom Full-length-Transkript kodierte Polypeptid enthält eine N-terminale und zwei C-terminale BRCT-Domänen, während der MCPH1De9-14-Isoform die beiden C-terminalen BRCT-Domänen fehlen. Beide Varianten zeigen eine ähnliche Höhe der Gewebe-spezifischen Expression und sind in bestimmten fötalen Organen stärker vertreten als in adulten. Beide Isoformen werden während des Zellzyklus antagonistisch reguliert. Beide sind Zellkern-spezifische Proteine. Drei Kernlokalisierungssequenzen wurden in silico identifiziert. Die funktionelle Untersuchung dieser Signale ergab, dass zwei von ihnen unabhängig voneinander den Kerntransport des Proteins bewerkstelligen können. Die alleinige Expression der jeweiligen Variante ist ausreichend, um die defekte Chromosomenkondensation in MCPH1-defizienten Zellen zu komplementieren. Fehlende Komplementation mit der Deletionsvariante MCPH1De1-7 weist die N-terminale Region von MCPH1 als unentbehrlich zur Verhinderung von PCC aus. Die Ergebnisse der vorliegenden Arbeit deuten auf eine redundante Funktion der beiden Isoformen in der Regulierung der Chromosomenkondensation hin. Im Gegensatz dazu verhalten sie sich unterschiedlich im Bezug auf die DNA-Schadensantwort. Während Full-length-MCPH1 in strahlungsinduzierten Reparaturfoci lokalisiert werden kann, wird für MCPH1De9-14 keine Kolokalisierung mit phosphoryliertem H2AX nach DNA-Schadensinduktion beobachtet. Zusammenfassend kann man feststellen, dass das MCPH1-Gen für unterschiedliche Isoformen mit differenzieller Regulation auf RNA-Ebene und verschiedenen Funktionen auf Protein-Ebene kodiert. Die Ergebnisse der vorliegenden Arbeit erleichtern das Verständnis der diversen Funktionen von MCPH1 in der Zelle. / Primary microcephaly (MCPH) is a heterogeneous autosomal recessive human disorder characterized by pronounced reduction of brain size and variable mental retardation without additional neurological deficits. To date, biallelic mutations in any of five genes have been identified to cause MCPH. A hallmark of patients with mutations in the MCPH1 gene is a cellular phenotype with premature chromosome condensation in the G2 phase of the cell cycle and delayed decondensation in the subsequent G1 phase (PCC syndrome). Here, we find that MCPH1 encodes two major species of transcripts: full-length MCPH1 and a transcript lacking sequence of the five 3’-exons of the gene (MCPH1De9-14). The polypeptide encoded by the full length transcript contains one N-terminal and two C-terminal BRCT domains, while the protein encoded by the MCPH1De9-14 variant is lacking the tandem C-terminal BRCT domains. Both variants show similar tissue-specific expression patterns, are likewise abundant in many foetal over adult organs, but are regulated antagonistically during cell cycle progression. Both MCPH1 isoforms show nuclear localization. Three nuclear localization signal sequences were identified in silico two of which proved to contribute individually to nuclear targeting. Expression of full-length MCPH1 or MCPH1De9-14 is independently able to complement the defective chromosome condensation in MCPH1-deficient cells. In contrast, attempts to complement with the mutant variant MCPH1De1-7 failed and thus identify the N-terminus of MCPH1 as crucial for the prevention of PCC. The present results suggest a redundant function of full-length and De9-14 MCPH1 in the regulation of chromosome condensation but different behaviour in the DNA damage response: While full-length MCPH1 localizes to nuclear repair foci following ionizing irradiation, MCPH1De9-14 fails to co-localize with phosphorylated H2AX. The results of the present study show that the MCPH1 gene encodes different isoforms that are differentially regulated at the transcript level and have differential functions at the protein level. These findings facilitate a better understanding of the diverse cellular functions claimed to MCPH1.
|
8 |
Structural and functional characterization of nucleotide excision repair proteins / Strukturelle und funktionelle Charakterisierung von Nucleotid-Exzisions-Reparatur ProteinenWolski, Stefanie Carola January 2011 (has links) (PDF)
XPD is a 5‘-3‘ helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade. / XPD ist eine 5‘-3‘ Helicase der Superfamilie 2. Als Untereinheit des Transkriptionsfaktors IIH ist XPD in Transkriptionsinitiation und Nucleotid-Exzisions-Reparatur involviert. Diese Arbeit fokusiert auf die Rolle von XPD in der NER. NER ist ein DNA Reparatur Weg der bekannt ist für seine breite Substratspezifität. In Säugetieren ist NER der einzige Reparaturmechanismus, der fähig ist Läsionen zu reparieren, die durch UV Strahlung induziert werden. NER kann man in vier unterschiedliche Schritte aufteilen die zwischen Pro- und Eukaryoten konserviert sind. Schritt 1 besteht aus der initialen Schadenserkennung, während des zweiten Schrittes wird der mögliche Schaden verifiziert, im dritten Schritt wird der verifizierte Schaden ausgeschnitten und im vierten und letzten Schritt wird die resultierende Lücke in der DNA geschlossen. Es wurde gezeigt, dass XPD in die Schadensverifizierung involviert ist. Ein MAD Versuch, bei dem nur das endogene Eisen des Eisen-Schwefel-Clusters verwendet wurde ermöglichte die Strukturlösung der ersten apo XPD Struktur. Basierend auf der Struktur ergeben sich verschiedene Fragen: wo wird DNA gebunden? Wo wird DNA aufgetrennt? Wie wird Schadenserkennung ermöglicht? Was ist die Rolle des Eisen-Schwefel-Clusters? Diese Fragen werden in dieser Arbeit angesprochen. Strukturbasierte funktionelle Mutagenesestudien, die auf Hypothesen basiert sind, wurden angewendet und mit einer detailierten biochemischen Charakterizierung der Varianten kombiniert. Die Varianten wurden mittels thermischen Entfaltungsstudien analysiert, um die Möglichkeit auszuschliessen, dass die Stabilität durch die Punktmutation betroffen ist. DNA-Bindungs- Assays, ATPase Assays und Helikase Assays wurden durchgeführt um Aminosäurereste zu identifizieren, die für DNA Bindung, Helikase Aktivität und Schadenserkennung wichtig sind. Eine Struktur von XPD, die ein DNA Fragment mit vier Basen enthält, wurde mittels Molekularem Ersatz gelöst. Diese Struktur zeigt die Polarität des translozierenden DNA- Stranges im Verhältnis zu der Helikasestruktur auf. Desweiteren wurden die Eigenschaften des FeS Clusters mittels paramagnetischen Elektronenresonanz Studien untersucht, um Einblicke in die Rolle des FeS Clusters zu bekommen. Ausserdem wurde XPD aus Ferroplasma acidarmanus erforscht, da gezeigt wurde, dass es an CPD enthaltenden Läsionen hängen bleibt. Diese Daten stellen die ersten detailierten Einblicke in den Translokationsmechanismus einer SF2B Helikase dar und zeigen wie Polarität erzielt wird. Das ist eine Basis für weitere Analysen, um die kombinierte Aktion von Helikase und dem 4Fe4S Cluster zu verstehen, die zur Schadenserkennung in der NER Kaskade führt.
|
9 |
Humane Topoisomerase I und genotoxischer Stress /Rockstroh, Anja. January 2007 (has links)
Universiẗat, Diss.--Jena, 2007.
|
10 |
RAD6-abhängige DNA-Reparatur wird durch Ubiquitin- und SUMO-Modifikation von PCNA reguliertHöge, Carsten. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--München. / Enth. 1 Sonderabdr. aus : Nature ; Vol. 419. 2002.
|
Page generated in 0.0588 seconds