• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Roles of the DOG-1 and JRH-1 helicase-like proteins in DNA repair in Caenorhabditis elegans

Youds, Jillian L. 05 1900 (has links)
Helicases perform vital roles in the cell by unwinding D N A to make it accessible for the essential processes of replication, transcription and repair. In Caenorhabditis elegans, the DOG- 1 helicase-like protein is required for polyG/polyC-tract (G/C-tract) maintenance, as dog-l animals have a mutator phenotype characterized by deletions that initiate in G/C-tracts. DOG-1 may unwind secondary structures that form in polyguanine D N A during lagging strand replication. In order to more completely understand the role of dog-1, genetic interactors were identified, dog-1 functionally interacts with the him-6/BLM helicase. Absence of recombinational repair-implicated proteins in the dog-1 background, including HIM-6/BLM, RAD-51, BRD-1/BARD1 and HIM-9/XPF, as well as the trans-lesion synthesis polymerases polKMD po/7 increased the frequency of animals with G/C-tract deletions, indicating that these pathways are important mechanisms for repair at G/C-tracts in the absence of DOG-1. These data support the hypothesis that persisting D N A secondary structures can cause replication fork stalling, which can be resolved by deletion-free or deletion-prone mechanisms. DOG-1 has highest sequence identity to human BR1P1/FANCJ, which is mutated in patients from the Fanconi Anemia (FA) subgroup J. D N A damage sensitivity experiments indicated that, like chicken F A N C J cells, dog-1 mutants were not significantly sensitive to DNA damage from X-ray or UV-irradiation, but were extremely hypersensitive to the D N A interstrand cross-linking agent UVA-activated trimethylpsoralen. Thus, DOG-1 appears to have a conserved role in cross-link repair and is the C. elegans F A N C J homolog. Characterization of the dog-1/FANCJ-relatsd helicase, Jrh-1, revealed that mutants for this putative helicase are moderately sensitive to cross-linking agents, dog-1 jrh-1 double mutants displayed a synthetic lethal phenotype characterized by excessive recombination intermediates and mitotic catastrophe in the germline. However, absence of JRH-1 did not have any effect on G/C-tract deletions, indicating that JRH-1 does not have a redundant function with DOG-1 at G/C-tracts. Absence of JRH-1 reduced the fitness of eTl and nTl translocation hétérozygotes, but not translocation homozygotes, jrh-1 was synthetically lethal with him-6/BLM and with the endonuclease mus-81, suggesting a possible role for JRH-1 in regulating the balance between different types of repair.
2

Roles of the DOG-1 and JRH-1 helicase-like proteins in DNA repair in Caenorhabditis elegans

Youds, Jillian L. 05 1900 (has links)
Helicases perform vital roles in the cell by unwinding D N A to make it accessible for the essential processes of replication, transcription and repair. In Caenorhabditis elegans, the DOG- 1 helicase-like protein is required for polyG/polyC-tract (G/C-tract) maintenance, as dog-l animals have a mutator phenotype characterized by deletions that initiate in G/C-tracts. DOG-1 may unwind secondary structures that form in polyguanine D N A during lagging strand replication. In order to more completely understand the role of dog-1, genetic interactors were identified, dog-1 functionally interacts with the him-6/BLM helicase. Absence of recombinational repair-implicated proteins in the dog-1 background, including HIM-6/BLM, RAD-51, BRD-1/BARD1 and HIM-9/XPF, as well as the trans-lesion synthesis polymerases polKMD po/7 increased the frequency of animals with G/C-tract deletions, indicating that these pathways are important mechanisms for repair at G/C-tracts in the absence of DOG-1. These data support the hypothesis that persisting D N A secondary structures can cause replication fork stalling, which can be resolved by deletion-free or deletion-prone mechanisms. DOG-1 has highest sequence identity to human BR1P1/FANCJ, which is mutated in patients from the Fanconi Anemia (FA) subgroup J. D N A damage sensitivity experiments indicated that, like chicken F A N C J cells, dog-1 mutants were not significantly sensitive to DNA damage from X-ray or UV-irradiation, but were extremely hypersensitive to the D N A interstrand cross-linking agent UVA-activated trimethylpsoralen. Thus, DOG-1 appears to have a conserved role in cross-link repair and is the C. elegans F A N C J homolog. Characterization of the dog-1/FANCJ-relatsd helicase, Jrh-1, revealed that mutants for this putative helicase are moderately sensitive to cross-linking agents, dog-1 jrh-1 double mutants displayed a synthetic lethal phenotype characterized by excessive recombination intermediates and mitotic catastrophe in the germline. However, absence of JRH-1 did not have any effect on G/C-tract deletions, indicating that JRH-1 does not have a redundant function with DOG-1 at G/C-tracts. Absence of JRH-1 reduced the fitness of eTl and nTl translocation hétérozygotes, but not translocation homozygotes, jrh-1 was synthetically lethal with him-6/BLM and with the endonuclease mus-81, suggesting a possible role for JRH-1 in regulating the balance between different types of repair.
3

Roles of the DOG-1 and JRH-1 helicase-like proteins in DNA repair in Caenorhabditis elegans

Youds, Jillian L. 05 1900 (has links)
Helicases perform vital roles in the cell by unwinding D N A to make it accessible for the essential processes of replication, transcription and repair. In Caenorhabditis elegans, the DOG- 1 helicase-like protein is required for polyG/polyC-tract (G/C-tract) maintenance, as dog-l animals have a mutator phenotype characterized by deletions that initiate in G/C-tracts. DOG-1 may unwind secondary structures that form in polyguanine D N A during lagging strand replication. In order to more completely understand the role of dog-1, genetic interactors were identified, dog-1 functionally interacts with the him-6/BLM helicase. Absence of recombinational repair-implicated proteins in the dog-1 background, including HIM-6/BLM, RAD-51, BRD-1/BARD1 and HIM-9/XPF, as well as the trans-lesion synthesis polymerases polKMD po/7 increased the frequency of animals with G/C-tract deletions, indicating that these pathways are important mechanisms for repair at G/C-tracts in the absence of DOG-1. These data support the hypothesis that persisting D N A secondary structures can cause replication fork stalling, which can be resolved by deletion-free or deletion-prone mechanisms. DOG-1 has highest sequence identity to human BR1P1/FANCJ, which is mutated in patients from the Fanconi Anemia (FA) subgroup J. D N A damage sensitivity experiments indicated that, like chicken F A N C J cells, dog-1 mutants were not significantly sensitive to DNA damage from X-ray or UV-irradiation, but were extremely hypersensitive to the D N A interstrand cross-linking agent UVA-activated trimethylpsoralen. Thus, DOG-1 appears to have a conserved role in cross-link repair and is the C. elegans F A N C J homolog. Characterization of the dog-1/FANCJ-relatsd helicase, Jrh-1, revealed that mutants for this putative helicase are moderately sensitive to cross-linking agents, dog-1 jrh-1 double mutants displayed a synthetic lethal phenotype characterized by excessive recombination intermediates and mitotic catastrophe in the germline. However, absence of JRH-1 did not have any effect on G/C-tract deletions, indicating that JRH-1 does not have a redundant function with DOG-1 at G/C-tracts. Absence of JRH-1 reduced the fitness of eTl and nTl translocation hétérozygotes, but not translocation homozygotes, jrh-1 was synthetically lethal with him-6/BLM and with the endonuclease mus-81, suggesting a possible role for JRH-1 in regulating the balance between different types of repair. / Medicine, Faculty of / Medical Genetics, Department of / Graduate

Page generated in 0.0162 seconds