• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 14
  • 12
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Reproducibility and sensitivity of Doppler echocardiographic indices of left ventricular function during exercise

Moore, Alan D. January 1987 (has links)
The two most common methods used for the assessment of left ventricular function (LVF) are two-dimensional echocardiography and nuclear ventriculography. Recent technological advances have led to the development of an inexpensive, noninvasive alternative: the stand-alone continuous wave Doppler echocardiograph. The purposes cf this study were twofold: 1) to examine the repeatability of three Doppler measured indices of LVF during repeated exercise trials, and 2) to determine if induced changes in myocardial contractility would be reflected by changes in the Doppler indices. The Doppler indices of LVF were the peak acceleration of ascending aortic blood (pkA), peak Velocity of ascending aortic blood (pkV), and the integral of the Velocity-time waveform (SVI). The study was conducted in two phases. In the first phase, 44 young, healthy males performed similar graded cycle exercise tasks on two separate days. Exercise levels were increased by 50 W every three minutes. PkA, pkV, SVI, blood pressure, heart rate and oxygen consumption were recorded every stage. The test was continued until the subject reached symptom-limited maximum. Pearson product-moment correlation coefficients were used to determine the reproducibility of the dependent measures between the two tests. The second phase involved the testing of a subset of the original 44 subjects (N=18) under a placebo (control) condition, acute beta-blockade, and oral hyperhydration states. Hematocrit was measured as a means to assess blood volume changes. The subjects exercised at levels requiring 20, 40 and 60% of their maximum oxygen consumption. Each stage lasted six minutes. PkA, pkV, SVI, heart rate, blood pressure, cardiac output, and stroke volume were measured. The latter two were determined by a carbon dioxide rebreathing technique. This was a split-plot design with multiple dependent measures. The statistical analysis was a multivariate analysis of variance (MANOVA) with repeated measures. Appropriate univariate tests were utilized as post-hoc procedures. With respect to the first phase, the correlation coefficients for pkA ranged from 0.54-0.81, for pkV, 0.65-0.77, and for SVI, 0.40-0.71. The results of the second phase indicated that alterations in contractile status by beta-blockade was reflected by changes in the Doppler measures, but the hyperhydration state did not produce a change in cardiac contractile response that was detectable. There were no documented changes in plasma volume as measured by change in hematocrit, therefore, the effectiveness of the hyperhydration procedure was judged ineffective. PkA and pkV were significantly reduced (p<.01) at all stages of exercise in the beta-blocked state as compared to the placebo values. Cardiac output and heart rate were significantly lower in the beta-blocked state, and stroke volume was significantly higher. The results of this experiment indicates that continuous wave Doppler echocardiographic estimates of LVF are reproducible (r=0.40-0.81) and reflect changes in myocardial contractility induced by acute beta-blockade. / Ph. D.
32

An application of adaptive complex prediction

Blasi, Wayne Michael January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
33

Analysis of Turbulence Observed in the Florida Current using an ADCP

Unknown Date (has links)
The observation of turbulence in the Florida Current is presented with the use of velocity measurements collected with an Acoustic Doppler Current Profiler (ADCP). The research is conducted through application of the theories of Taylor and Kolmogorov and related derivations, and processing tools of MATLAB software to this Eulerian observation of flow [1]. The velocity profile of the Florida Current is deduced in terms of its turbulent character with shear, acceleration, gradient, Reynolds Number, Reynolds Stress, Welch power spectrum density of current velocity, wavenumbers of Taylor’s hypothesis and Kolmogorov, wavenumber spectrum, eddy diameters, diapycnal diffusivity, and the Richardson Number. Processing methods are validated with results of other research conducted in the Florida Current with the use of a Multi-Scale Profiler, and an Advanced Microstructure Profiler for determination of shear, dissipation, diffusivity, and estimates of turbulent eddy diameters based on Taylor’s Hypothesis [1][4]. A spectral analysis is developed and is compared with Kolmogorov’s -5/3-Law. The process and the results of the analysis are described. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
34

A Study of some problems in the evaluation of radiation fields =: [Fu she chang ji suan zhong yi xie wen ti de tan tao].

January 1992 (has links)
by Leung Chu Wah. / Parallel title in Chinese characters. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 181-182). / Acknowledgements --- p.vi / Abstract --- p.vii / Chapter 1. --- Introduction --- p.1 / Chapter 2. --- Evaluation of Far Field by Lai and Char's Method --- p.6 / Chapter 2.1 --- Far Field Expression --- p.6 / Chapter 2.2 --- Radiation Power --- p.12 / Chapter 2.3 --- Gaussian Curvature and Point of Stationary Phase of Cylindrically Symmetry DWS --- p.16 / Figures for Chapter2 --- p.19 / Chapter 3. --- Synchrotron Radiation in Vacuum Using Lai and Char's Method --- p.20 / Chapter 3.1 --- The Far Field --- p.20 / Chapter 3.2 --- Current Density for a Gyrating Charge --- p.22 / Chapter 3.3 --- Radiation Power --- p.25 / Chapter 3.4 --- Some Angular Properties of Synchrotron Radiation --- p.29 / Chapter 3.5 --- Total Power Emitted in N-th Harmonic --- p.32 / Chapter 3.6 --- Total Power Emitted in All Harmonics --- p.33 / Figures for Chapter3 --- p.36 / Chapter 4. --- Synchrotron Radiation in a Cold Magnetoplasma --- p.42 / Chapter 4.1 --- DWS for a Cold Magnetoplasma --- p.42 / Chapter 4.2 --- Derivatives of kp and Gaussian Curvature of DWS --- p.45 / Chapter 4.3 --- Group Velocity --- p.46 / Chapter 4.4 --- Current Density --- p.47 / Chapter 4.5 --- Point of Stationary Phase --- p.48 / Chapter 4.6 --- Identification of Different Wave Modes --- p.48 / Chapter 4.7 --- Radiation Power --- p.49 / Chapter 4.8 --- Relation with Vacuum Case --- p.53 / Figures for Chapter4 --- p.56 / Chapter 5. --- Incoherent Radiation from an Assembly of Charges --- p.79 / Chapter 5.1 --- Total Incoherent Energy Flux from N Particles --- p.79 / Chapter 5.2 --- Synchrotron Radiation from Particles with Momentum Distribution --- p.80 / Chapter 5.3 --- Mono-Energetic Particles with Distributed Parallel Momentum --- p.82 / Chapter 5.4 --- "Angular Distribution, Frequency Distribution and Total Radiation Power" --- p.87 / Figures for Chapter5 --- p.88 / Chapter 6. --- Coherent Radiation from an Assembly of Charges --- p.94 / Chapter 6.1 --- Bunching Factor --- p.94 / Chapter 6.2 --- Some Arrangements of Particles --- p.96 / Chapter 6.2.1 --- Charges Distributed Uniformly over an Arc of Angular Width --- p.96 / Chapter 6.2.2 --- Charges Distributed Along a Straight Line --- p.100 / Chapter 6.2.3 --- Charges Distributed Uniformly on a Helical Path --- p.101 / Chapter 6.2.4 --- Charges Distributed Randomly on an Arc --- p.102 / Chapter 6.3 --- Effect of Bunching in a Cold Magnetoplasma --- p.104 / Figures for Chapter6 --- p.105 / Chapter 7. --- Correction to Radiation Power Formula for Degenerate DWS --- p.113 / Chapter 7.1 --- Far Field Expression for Degenerate DWS --- p.113 / Chapter 7.2 --- Radiation Power for Degenerate DWS --- p.115 / Chapter 7.3 --- Alternate Proof for the Extra Factorin (7.2.11) --- p.118 / Chapter 7.4 --- Example of Degenerate DWS - Vacuum --- p.120 / Chapter 8. --- "Ratio of Emitted Power to Received Power, f" --- p.122 / Chapter 8.1 --- Group Velocity in terms of Derivatives of DWS --- p.122 / Chapter 8.2 --- Calculation of Derivatives --- p.124 / Chapter 8.3 --- Expression for f --- p.126 / Chapter 8.4 --- Alternate Form of f --- p.127 / Chapter 8.5 --- Examples of Calculating f Using (8.4.1) --- p.129 / Chapter 8.5.1 --- Isotropic Cold Plasma --- p.129 / Chapter 8.5.2 --- Cold Magnetoplasma --- p.130 / Figures for Chapter8 --- p.132 / Chapter 9. --- Comparison of Far Field by Lai and Chan with that by Others --- p.135 / Chapter 9.1 --- Expressing the Far Field Ratio in terms of Derivatives of DWS and WS --- p.135 / Chapter 9.2 --- Far Field Ratio for an Uniaxial Non-Dispersive Medium --- p.137 / Chapter 9.3 --- Far Field Ratio for an Isotropic Cold Plasma --- p.138 / Chapter 10. --- Minimum Far Field Distance to a Moving Radiating Source in an Anisotropic and Dispersive Medium --- p.140 / Chapter 10.1 --- Sub-Dominant Terms of the Far Field --- p.141 / Chapter 10.2 --- Minimum Far Field Distance --- p.147 / Chapter 10.3 --- Minimum Far Field Distance in an Isotropic Non-Dispersive Medium --- p.152 / Chapter 10.4 --- Minimum Far Field Distance in an Isotropic Dispersive Cold Plasma --- p.156 / Chapter 10.5 --- Minimum Far Field Distance for Alfven Waves in a Cold Magnetoplasma --- p.159 / Chapter 10.6 --- Comparison of Results by Other Authors --- p.162 / Figures for Chapter 10 --- p.165 / Chapter 11. --- Conclusions / Chapter Appendix 1. --- Calculation of the Total Power Emitted in Synchrotron Radiation in Vacuum --- p.170 / Chapter Appendix 2. --- "Derivatives of stix's Parameters and a1,a2 of Equation (4.1.22)-(4.1.23 )" --- p.176 / Chapter Appendix 3. --- Dispersion Relation for Alfven Wavesin a Cold Magnetoplasma --- p.179 / References --- p.181
35

Pulse-diverse radar waveform design for delay-doppler estimation.

January 2000 (has links)
by Wing-Kit Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 123-127). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Application of Time Delay and Doppler Shift Estimation in Active Radar --- p.1 / Chapter 1.2 --- Joint Time delay and Doppler Shift Estimation Algorithm based on Correlation --- p.4 / Chapter 1.3 --- A Brief Review of Radar Signal Design --- p.6 / Chapter 1.3.1 --- Suppression of Range Sidelobes Level --- p.6 / Chapter 1.3.2 --- Reduction of Ambiguity of Delay-Doppler Plane --- p.8 / Chapter 1.4 --- Goal and Outline of the Thesis --- p.9 / Chapter 2 --- CAF and Pulse Diversity for Radar Signals --- p.11 / Chapter 2.1 --- Radar Ambiguity Function --- p.12 / Chapter 2.1.1 --- Properties of Radar Ambiguity Function --- p.12 / Chapter 2.1.2 --- Ideal Ambiguity Function --- p.13 / Chapter 2.2 --- Composite Ambiguity Function (CAF) --- p.14 / Chapter 2.2.1 --- Properties of Composite Ambiguity Function --- p.15 / Chapter 2.3 --- CAF of Joint Phase and Frequency Shift Keying (PSK-FSK) Mod- ulated Signal --- p.17 / Chapter 2.4 --- Summary --- p.21 / Chapter 3 --- CAF Algorithm and Its Performance Analysis --- p.22 / Chapter 3.1 --- CAF Algorithm for Time Delay and Doppler Shift Estimation --- p.23 / Chapter 3.2 --- The Cramer-Rao Lower Bound of the CAF Algorithm --- p.24 / Chapter 3.3 --- Performance Analysis of the CAF Algorithm --- p.28 / Chapter 3.4 --- Global Accuracy --- p.31 / Chapter 3.5 --- Numerical Results for Derivation of CAF Algorithm --- p.35 / Chapter 3.5.1 --- Simulation Results of CRLB for Various Multi-pulse Signals --- p.35 / Chapter 3.5.2 --- Simulation Results of Global Accuracy for Various Multi- pulse Signals --- p.36 / Chapter 3.5.3 --- Simulation on Global Accuracy with Different Parameters --- p.37 / Chapter 3.6 --- Summary --- p.39 / Chapter 4 --- Optimum Pulse-Diverse Waveforms Design --- p.46 / Chapter 4.1 --- Criteria for Optimum Waveforms --- p.46 / Chapter 4.2 --- Optimum Signals Based on Joint Phase and Frequency Shift Key- ing (PSK-FSK) Modulated Signal --- p.48 / Chapter 4.3 --- Genetic Algorithm (GA) --- p.50 / Chapter 4.4 --- Numerical Results --- p.54 / Chapter 4.4.1 --- "Comparison of Optimized PSK, FSK and PSK-FSK Signals" --- p.55 / Chapter 4.4.2 --- Simulation on Large Number of Pulses for Pulse-diverse Waveform Set --- p.59 / Chapter 4.4.3 --- Simulation Results of CAF algorithm for Time Delay and Doppler Shift Estimation --- p.63 / Chapter 4.4.4 --- Various Distribution of Ambiguity Volume on the Delay- Doppler Plane --- p.70 / Chapter 4.5 --- Summary --- p.74 / Chapter 5 --- Wideband CAF (WCAF) and Its Analysis --- p.75 / Chapter 5.1 --- WCAF Algorithm for Time Delay and Doppler Stretch Estimation --- p.76 / Chapter 5.2 --- Theory of Wavelet Packets --- p.77 / Chapter 5.3 --- Design of Wideband Optimum Waveforms for WCAF Algorithm --- p.80 / Chapter 5.4 --- Performance Evaluation --- p.82 / Chapter 5.4.1 --- The Cramer-Rao Lower Bound of WCAF Algorithm --- p.83 / Chapter 5.4.2 --- The Global Accuracy of WCAF Algorithm --- p.84 / Chapter 5.4.3 --- Numerical Results --- p.86 / Chapter 5.5 --- Summary --- p.89 / Chapter 6 --- Conclusion and Suggestion for Future Research --- p.90 / Chapter 6.1 --- Conclusion --- p.90 / Chapter 6.2 --- Suggestion for Future Research --- p.93 / Chapter A --- Derivation of Ambiguity Function and CAF --- p.94 / Chapter A.1 --- Properties of Radar Ambiguity Function --- p.94 / Chapter A.2 --- Properties of Composite Ambiguity Function --- p.96 / Chapter B --- Derivation of Fisher Information Matrix of CAF Algorithm --- p.98 / Chapter C --- Derivation of Performance Analysis of CAF Algorithm --- p.103 / Chapter C.1 --- Derivation of TD and DS Estimate by Proposed Estimator --- p.103 / Chapter C.2 --- Derivation the Asymptotic Variance of The Estimates --- p.106 / Chapter D --- Derivation of Probability of Decision Error --- p.113 / Chapter E --- PSK-FSK Modulating Code of Various Multi-pulse Signals --- p.116 / Chapter F --- Derivation of Wavelet-Based Wideband CAF --- p.120 / Chapter F.1 --- Volume of Wideband Ambiguity Function --- p.120 / Chapter F.2 --- Volume of Wideband Composite Ambiguity Function --- p.121 / Bibliography --- p.123
36

Implementation of optical feedback interferometry for sensing applications in fluidic systems

Ramírez-Miquet, Evelio Esteban 29 September 2016 (has links) (PDF)
Optical feedback interferometry is a sensing technique with relative recent implementation for the interrogation of fluidic systems. The sensing principle is based on the perturbation of the laser emission parameters induced by the reinjection in the laser cavity of light back-scattered from a distant target. The technique allows for the development of compact and noninvasive sensors that measure various parameters related to the motion of moving targets. In particular, optical feedback interferometers take advantage of the Doppler effect to measure the velocity of tracers in flowing liquids. These important features of the optical feedback interferometry technique make it wellsuited for a variety of applications in chemical engineering and biomedical fields, where accurate monitoring of the flows is needed. This thesis presents the implementation of optical feedback interferometry based sensors in multiple fluidic systems where local velocity or flow rate are directly measured. We present an application-centered study of the optical feedback sensing technique used for flow measurement at the microscale with focus on the reliability of the signal processing methods for flows in the single and the multiple scattering regimes. Further, we present experimental results of ex vivo measurements where the optical feedback sensor is proposed as an alternative system for myography. In addition we present a real-time implementation for the assessment of non-steady flows in a millifluidic configuration. A semi-automatized system for single particle detection in a microchannel is proposed and demonstrated. Finally, an optical feedback based laser sensor is implemented for the characterization of the interactions between two immiscible liquid-liquid flowing at the microscale, and the measurement is compared to a theoretical model developed to describe the hydrodynamics of both fluids in a chemical microreactor. The present manuscript describes an important contribution to the implementation of optical feedback sensors for fluidic and microfluidic applications. It also presents remarkable experimental results that open new horizons to the optical feedback interferometry.
37

Evaluation of a Doppler sonar system for measurements of fish swimming velocity /

Tollefsen, Cristina Dawn Spanu, January 2005 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2005. / Bibliography: leaves 188-193.
38

Reed-Muller codes in error correction in wireless adhoc networks /

Tezeren, Serdar U. January 2004 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, March 2004. / Thesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 133-134). Also available online.
39

Radio channel modeling for mobile ad hoc wireless networks /

Sng, Sin Hie. January 2004 (has links) (PDF)
Thesis (M.S. in Engineering Science (Electrical Engineering))--Naval Postgraduate School, June 2004. / Thesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 71). Also available online.
40

Blood flow evaluation using an intracoronary doppler catheter

Newton, Bradley Scot 05 1900 (has links)
No description available.

Page generated in 0.0336 seconds