• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Space--Time VMS Computation of Incompressible Flows With Airfoil Geometries and High Reynolds Numbers

Montes, Darren 05 June 2013 (has links)
A new version of the Deforming-Spatial-Domain/Stabilized Space--Time (DSD/SST) formulation of incompressible flows has been introduced recently to have additional subgrid-scale representation features. This is the space--time version of the residual-based variational multiscale (VMS) method. The new version is called DSD/SST-VMST (i.e. the version with the VMS turbulence model) and also Space--Time VMS (ST-VMS). The thesis starts with a brief overview of the ST-VMS method. It continues with a comprehensive set of test computations with 3D airfoil geometries at high Reynolds numbers and comparison with experimental data. The thesis shows that the test computations signal a promising future for the ST-VMS method.
2

Space--Time VMS Computation of Incompressible Flows With Airfoil Geometries and High Reynolds Numbers

Montes, Darren 05 June 2013 (has links)
A new version of the Deforming-Spatial-Domain/Stabilized Space--Time (DSD/SST) formulation of incompressible flows has been introduced recently to have additional subgrid-scale representation features. This is the space--time version of the residual-based variational multiscale (VMS) method. The new version is called DSD/SST-VMST (i.e. the version with the VMS turbulence model) and also Space--Time VMS (ST-VMS). The thesis starts with a brief overview of the ST-VMS method. It continues with a comprehensive set of test computations with 3D airfoil geometries at high Reynolds numbers and comparison with experimental data. The thesis shows that the test computations signal a promising future for the ST-VMS method.

Page generated in 0.0322 seconds