1 |
Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas / Simulation of future agricultural scenarios for the soybean crop in Brazil based on climate change projectionsSilva, Evandro Henríque Figueiredo Moura da 08 February 2018 (has links)
A garantia da segurança alimentar global é um dos grandes desafios da humanidade para as próximas décadas. O aumento populacional do planeta, até 2050, em cerca de 2 bilhões de pessoas em 2050, a tendência de ascensão da classe média e as projeções de mudanças climáticas têm sido consideradas como um dos grandes desafios futuros para as políticas internacionais de seguridade alimentar. As projeções de alteração climática levam em consideração o aumento da concentração de gases de efeito estufa, sendo o CO2 o principal deles. O setor agrícola pode ser o mais afetado pelas mudanças no clima. O Brasil é o maior exportador e o segundo maior produtor de soja (Glycine max L.) do mundo. Essa cultura representa mais de 60% de toda a proteína alimentar de origem vegetal produzida no mundo. Considerando essa problemática, o presente estudo teve como objetivo geral simular o crescimento da cultura da soja em pontos estrategicamente selecionados no Brasil, com base em séries históricas observadas e em cenários climáticos futuros. Para isso, o modelo DSSAT/CROPGRO-SOYBEAN foi calibrado para diferentes grupos de maturação relativa (6.0, 7.0, 8.0 e 9.0), de modo a abranger pelo menos 80% de toda a produção nacional. Especificamente para o grupo 6.0, foi necessário a instalação de um experimento de campo, em Piracicaba-SP nas safras 2015/16 e 2016/17. Para a projeção dos cenários climáticos futuros adotou-se a metodologia do projeto internacional Agricultural Model Intercomparison and Improvement Project (AgMIP). Esses cenários foram baseados nas projeções de concentrações futuras de CO2 atmosférico (RCP 4.5 e RCP 8.5). Considerando as duas possibilidades de concentração futura de CO2, selecionou-se três modelos climáticos globais (GCM) para cada zona homogênea. As zonas homogêneas foram agrupadas considerando a soma térmica, aridez e sazonalidade de temperatura. As produtividades futuras de soja foram simuladas para o período 2040-2069 (representando 2050). Notou-se que as mudanças climáticas podem contribuir para o aumento da produtividade de soja no Brasil para a maioria das zonas homogêneas nos cenários simulados, mas com aumento do risco climático da cultura em algumas regiões. As simulações e zonas homogêneas que apresentaram perdas de produtividade estavam estritamente relacionadas com o défict hídrico. / Ensuring global food security is one of humanity\'s greatest challenges for the coming decades. The rising population of the planet by about 2 billion people, the rising trend of the middle class and the projections of climate change have been considered as one of the great future challenges for international food security policies. The projections of climate change take into account the increase in the concentration of greenhouse gases, with CO2 being the main one. The agricultural sector may be most affected by changes in climate. Brazil is the largest exporter and the second largest producer of soybeans (Glycine max) in the world. This crop represents more than 60% of all plant protein produced in the world. Considering this problem, the present study had as general objective to simulate soybean crop growth in strategically selected points in Brazil, based on observed historical series and future climatic scenarios. For this, the DSSAT / CROPGRO-SOYBEAN model was calibrated for different maturation groups (6.0, 7.0, 8.0 and 9.0), to cover at least 80% of all national production. Specifically for group 6.0, it was necessary to install a field experiment in Piracicaba-SP in the 2015/16 and 2016/17 seasons. For the projection of the future climate scenarios the methodology of the international Agricultural Model Intercomparison and Improvement Project (AgMIP) was adopted. These scenarios were based on projections of future concentrations of atmospheric CO2 (RCP 4.5 and RCP 8.5). Considering the two possibilities of future CO2 concentration, three global climate models (GCM) were selected for each homogeneous zone. The homogeneous zones were grouped considering the thermal sum, aridity and seasonality of temperature. Future soybean yields were simulated for the period 2040-2069 (representing 2050). It was noted that climate change may contribute to increase soybean productivity in Brazil for most of the homogeneous zones in the simulated scenarios, but with increasing climatic risk of the crop in some regions. The simulations and homogeneous zones that presented productivity losses were strictly related to the water deficit.
|
2 |
Simulação de cenários agrícolas futuros para a cultura da soja no Brasil com base em projeções de mudanças climáticas / Simulation of future agricultural scenarios for the soybean crop in Brazil based on climate change projectionsEvandro Henríque Figueiredo Moura da Silva 08 February 2018 (has links)
A garantia da segurança alimentar global é um dos grandes desafios da humanidade para as próximas décadas. O aumento populacional do planeta, até 2050, em cerca de 2 bilhões de pessoas em 2050, a tendência de ascensão da classe média e as projeções de mudanças climáticas têm sido consideradas como um dos grandes desafios futuros para as políticas internacionais de seguridade alimentar. As projeções de alteração climática levam em consideração o aumento da concentração de gases de efeito estufa, sendo o CO2 o principal deles. O setor agrícola pode ser o mais afetado pelas mudanças no clima. O Brasil é o maior exportador e o segundo maior produtor de soja (Glycine max L.) do mundo. Essa cultura representa mais de 60% de toda a proteína alimentar de origem vegetal produzida no mundo. Considerando essa problemática, o presente estudo teve como objetivo geral simular o crescimento da cultura da soja em pontos estrategicamente selecionados no Brasil, com base em séries históricas observadas e em cenários climáticos futuros. Para isso, o modelo DSSAT/CROPGRO-SOYBEAN foi calibrado para diferentes grupos de maturação relativa (6.0, 7.0, 8.0 e 9.0), de modo a abranger pelo menos 80% de toda a produção nacional. Especificamente para o grupo 6.0, foi necessário a instalação de um experimento de campo, em Piracicaba-SP nas safras 2015/16 e 2016/17. Para a projeção dos cenários climáticos futuros adotou-se a metodologia do projeto internacional Agricultural Model Intercomparison and Improvement Project (AgMIP). Esses cenários foram baseados nas projeções de concentrações futuras de CO2 atmosférico (RCP 4.5 e RCP 8.5). Considerando as duas possibilidades de concentração futura de CO2, selecionou-se três modelos climáticos globais (GCM) para cada zona homogênea. As zonas homogêneas foram agrupadas considerando a soma térmica, aridez e sazonalidade de temperatura. As produtividades futuras de soja foram simuladas para o período 2040-2069 (representando 2050). Notou-se que as mudanças climáticas podem contribuir para o aumento da produtividade de soja no Brasil para a maioria das zonas homogêneas nos cenários simulados, mas com aumento do risco climático da cultura em algumas regiões. As simulações e zonas homogêneas que apresentaram perdas de produtividade estavam estritamente relacionadas com o défict hídrico. / Ensuring global food security is one of humanity\'s greatest challenges for the coming decades. The rising population of the planet by about 2 billion people, the rising trend of the middle class and the projections of climate change have been considered as one of the great future challenges for international food security policies. The projections of climate change take into account the increase in the concentration of greenhouse gases, with CO2 being the main one. The agricultural sector may be most affected by changes in climate. Brazil is the largest exporter and the second largest producer of soybeans (Glycine max) in the world. This crop represents more than 60% of all plant protein produced in the world. Considering this problem, the present study had as general objective to simulate soybean crop growth in strategically selected points in Brazil, based on observed historical series and future climatic scenarios. For this, the DSSAT / CROPGRO-SOYBEAN model was calibrated for different maturation groups (6.0, 7.0, 8.0 and 9.0), to cover at least 80% of all national production. Specifically for group 6.0, it was necessary to install a field experiment in Piracicaba-SP in the 2015/16 and 2016/17 seasons. For the projection of the future climate scenarios the methodology of the international Agricultural Model Intercomparison and Improvement Project (AgMIP) was adopted. These scenarios were based on projections of future concentrations of atmospheric CO2 (RCP 4.5 and RCP 8.5). Considering the two possibilities of future CO2 concentration, three global climate models (GCM) were selected for each homogeneous zone. The homogeneous zones were grouped considering the thermal sum, aridity and seasonality of temperature. Future soybean yields were simulated for the period 2040-2069 (representing 2050). It was noted that climate change may contribute to increase soybean productivity in Brazil for most of the homogeneous zones in the simulated scenarios, but with increasing climatic risk of the crop in some regions. The simulations and homogeneous zones that presented productivity losses were strictly related to the water deficit.
|
Page generated in 0.0225 seconds